人工智能的应用领域之一是(人工智能的应用领域之一是( ))
大家好!今天让创意岭的小编来大家介绍下关于人工智能的应用领域之一是的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。
开始之前先推荐一个非常厉害的Ai人工智能工具,一键生成原创文章、方案、文案、工作计划、工作报告、论文、代码、作文、做题和对话答疑等等
只需要输入关键词,就能返回你想要的内容,有小程序、在线网页版、PC客户端和批量生成器
本文目录:
人工智能领域都有哪些
什么是人工智能?
人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学,是认知、决策、反馈的过程。
人工智能技术的细分领域有哪些?
人工智能技术应用的细分领域:深度学习、计算机视觉、智能机器人、虚拟个人助理、自然语言处理—语音识别、自然语言处理—通用、实时语音翻译、情境感知计算、手势控制、视觉内容自动识别、推荐引擎等。
下面,我们就每个细分领域,从概述和技术原理角度稍微做一下展开,供大家拓展一下知识。
1、深度学习
深度学习作为人工智能领域的一个重要应用领域。说到深度学习,大家第一个想到的肯定是AlphaGo,通过一次又一次的学习、更新算法,最终在人机大战中打败围棋大师。
对于一个智能系统来讲,深度学习的能力大小,决定着它在多大程度上能达到用户对它的期待。。
深度学习的技术原理:
1.构建一个网络并且随机初始化所有连接的权重; 2.将大量的数据情况输出到这个网络中; 3.网络处理这些动作并且进行学习; 4.如果这个动作符合指定的动作,将会增强权重,如果不符合,将会降低权重; 5.系统通过如上过程调整权重; 6.在成千上万次的学习之后,超过人类的表现;
2、计算机视觉
计算机视觉是指计算机从图像中识别出物体、场景和活动的能力。计算机视觉有着广泛的细分应用,其中包括,医疗领域成像分析、人脸识别、公关安全、安防监控等等。
计算机视觉
计算机视觉的技术原理:
计算机视觉技术运用由图像处理操作及其他技术所组成的序列来将图像分析任务分解为便于管理的小块任务。
3、语音识别
语音识别,是把语音转化为文字,并对其进行识别、认知和处理。语音识别的主要应用包括电话外呼、医疗领域听写、语音书写、电脑系统声控、电话客服等。
语音识别
语音识别技术原理:
1、 对声音进行处理,使用移动函数对声音进行分帧; 2、 声音被分帧后,变为很多波形,需要将波形做声学体征提取; 3、 声音特征提取之后,声音就变成了一个矩阵。然后通过音素组合成单词;
4、虚拟个人助理
苹果手机的Siri,以及小米手机上的小爱,都算是虚拟个人助理的应用。
虚拟个人助理技术原理:(以小爱为例)
1、用户对着小爱说话后,语音将立即被编码,并转换成一个压缩数字文件,该文件包含了用户语音的相关信息; 2、由于用户手机处于开机状态,语音信号将被转入用户所使用移动运营商的基站当中,然后再通过一系列固定电 线发送至用户的互联网服务供应商(ISP),该ISP拥有云计算服务器; 3、该服务器中的内置系列模块,将通过技术手段来识别用户刚才说过的内容。
5、自然语言处理
自然语言处理(NLP),像计算机视觉技术一样,将各种有助于实现目标的多种技术进行了融合,实现人机间自然语言的通信。
NLP
自然语言处理技术原理:
1、汉字编码词法分析; 2、句法分析; 3、语义分析; 4、文本生成; 5、语音识别;
6、智能机器人
智能机器人在生活中随处可见,扫地机器人、陪伴机器人……这些机器人不管是跟人语音聊天,还是自主定位导航行走、安防监控等,都离不开人工智能技术的支持。
智能机器人技术原理:
人工智能技术把机器视觉、自动规划等认知技术、各种传感器整合到机器人身上,使得机器人拥有判断、决策的能力,能在各种不同的环境中处理不同的任务。智能穿戴设备、智能家电、智能出行或者无人机设备其实都是类似的原理。
7、引擎推荐
淘宝、京东等商城,以及36氪等资讯网站,会根据你之前浏览过的商品、页面、搜索过的关键字推送给你一些相关的产品、或网站内容。这其实就是引擎推荐技术的一种表现。
Google为什么会做免费搜索引擎,目的就是为了搜集大量的自然搜索数据,丰富他的大数据数据库,为后面的人工智能数据库做准备。
引擎推荐技术原理:
推荐引擎是基于用户的行为、属性(用户浏览行为产生的数据),通过算法分析和处理,主动发现用户当前或潜在需求,并主动推送信息给用户的浏览页面。
人工智能有哪些应用领域
人工智能在交通出行领域、家庭家居领域、公共安全领域、手机及互联网娱乐领域以及医疗健康领域都为人们带来了便利。1、交通出行领域:
共享单车、共享电车、共享汽车方便了出行,让出行成本降低。智能辅助驾驶系统帮助人们安全驾驶,安全出行。
2、家庭家居领域:
智能互联家居在现在生活中应用广泛,它能够帮助人们对生活环境进行智能调控,对房屋进行安全监测、危险预警等,减少了煤气泄露、房屋被盗的风险。一句话打开音乐,一句话打开空调,一句话让生活变得很简单。
3、公共安全领域:
人脸、指纹、虹膜等生物特征的识别和大数据的结合,再进行实时监测,人工智能的应用能够加强公安系统的管理和安全预测。由大数据和人工智能构建起来的智慧城市工程,对城市公共安全领域。
4、手机及互联网娱乐领域:
人们接触最多的人工智能领域的应用来自于手机及互联网。手机的语音助手、实时翻译功能、图片文字智能识别提取、听歌识曲、刷脸解锁、拍照优化、相册分类、影像处理、AR特效、VR游戏等等,都不同程度的应用到了人工智能技术。
想了解更多有关人工智能的详情,推荐咨询达内教育。达内教育独创TTS8.0教学系统,达内OMO教学模式,全新升级,线上线下交互学习,满足学生多样化学习需求;同时,拥有经验丰富的讲师进行课程的讲授,对标企业人才标准,制定专业学习计划,囊括主流热点技术,运用理论知识+学习思维+实战操作,打造完整学习闭环;更有企业双选会,让学生就业更顺利。感兴趣的话点击此处,免费学习一下
人工智能的应用领域有哪些?
人工智能是研发模拟、扩展和扩展人的智能理论、方法、技术和应用系统的新技术科学,是认知、决策、反馈的过程。人工智能技术应用的细分领域:深入学习、计算机视觉、智能机器人、虚拟个人助理、自然语言处理-语音识别、自然语言处理-通用、实时语音翻译、情况感知计算、手势控制、视觉内容自动识别、推荐引擎等。
人工智能是研发模拟、扩展和扩展人的智能理论、方法、技术和应用系统的新技术科学,是认知、决策、反馈的过程。
人工智能技术应用的细分领域:深入学习、计算机视觉、智能机器人、虚拟个人助理、自然语言处理-语音识别、自然语言处理-通用、实时语音翻译、情况感知计算、手势控制、视觉内容自动识别、推荐引擎等。
人工智能是研发模拟、扩展和扩展人的智能理论、方法、技术和应用系统的新技术科学,是认知、决策、反馈的过程。
人工智能技术应用的细分领域:深入学习、计算机视觉、智能机器人、虚拟个人助理、自然语言处理-语音识别、自然语言处理-通用、实时语音翻译、情况感知计算、手势控制、视觉内容自动识别、推荐引擎等。
人工智能是研发模拟、扩展和扩展人的智能理论、方法、技术和应用系统的新技术科学,是认知、决策、反馈的过程。
人工智能技术应用的细分领域:深入学习、计算机视觉、智能机器人、虚拟个人助理、自然语言处理-语音识别、自然语言处理-通用、实时语音翻译、情况感知计算、手势控制、视觉内容自动识别、推荐引擎等。
人工智能是研发模拟、扩展和扩展人的智能理论、方法、技术和应用系统的新技术科学,是认知、决策、反馈的过程。
人工智能技术应用的细分领域:深入学习、计算机视觉、智能机器人、虚拟个人助理、自然语言处理-语音识别、自然语言处理-通用、实时语音翻译、情况感知计算、手势控制、视觉内容自动识别、推荐引擎等。
人工智能是研发模拟、扩展和扩展人的智能理论、方法、技术和应用系统的新技术科学,是认知、决策、反馈的过程。
人工智能技术应用的细分领域:深入学习、计算机视觉、智能机器人、虚拟个人助理、自然语言处理-语音识别、自然语言处理-通用、实时语音翻译、情况感知计算、手势控制、视觉内容自动识别、推荐引擎等。
人工智能是研发模拟、扩展和扩展人的智能理论、方法、技术和应用系统的新技术科学,是认知、决策、反馈的过程。
人工智能技术应用的细分领域:深入学习、计算机视觉、智能机器人、虚拟个人助理、自然语言处理-语音识别、自然语言处理-通用、实时语音翻译、情况感知计算、手势控制、视觉内容自动识别、推荐引擎等。
人工智能的应用领域包括哪些?
机器翻译,智能控制,专家系统,机器人学,语言和图像理解,遗传编程机器人工厂,自动程序设计,航天应用,庞大的信息处理,储存与管理,执行化合生命体无法执行的或复杂或规模庞大的任务等等。
值得一提的是,机器翻译是人工智能的重要分支和最先应用领域。不过就已有的机译成就来看,机译系统的译文质量离终极目标仍相差甚远;而机译质量是机译系统成败的关键。
中国数学家、语言学家周海中教授曾在论文《机器翻译五十年》中指出:要提高机译的质量,首先要解决的是语言本身问题而不是程序设计问题;单靠若干程序来做机译系统,肯定是无法提高机译质量的;
另外在人类尚未明了大脑是如何进行语言的模糊识别和逻辑判断的情况下,机译要想达到“信、达、雅”的程度是不可能的。智能家居之后,人工智能成为家电业的新风口。
影响
人工智能的长期经济影响尚不确定。一项针对经济学家的调查显示,对于越来越多地使用机器人和人工智能是否会导致长期失业率大幅上升存在分歧,但他们普遍认为,如果生产力收益重新分配,这可能是一项净收益。
普华永道2017 年的一项研究认为,到 2030 年,中华人民共和国在经济上从人工智能中获益最多,占 GDP 的26.1% 。
一份 2020 年 2 月的欧盟人工智能白皮书提倡人工智能以获取经济利益,包括“改善医疗保健(例如使诊断更精确,更好地预防疾病),提高农业效率,为减缓和适应气候变化做出贡献, 通过预测性维护提高生产系统的效率”,同时承认潜在风险。
以上内容参考 百度百科-人工智能
人工智能的应用领域有哪些
人工智能的主要应用领域有:1、强化学习领域;2、生成模型领域;3、记忆网络领域;4、数据学习领域;5、仿真环境领域;6、医疗技术领域;7、教育领域;8、物流管理领域。1、强化学习领域
强化学习是一种通过实验和错误来学习的方法,它受人类学习新技能的过程启发。在典型的强化学习案例中,我们让试验者通过观察当前所处的状态,进而采取行动使得反馈结果最大化。每执行一次动作,试验者都会收到来自环境的反馈信息,因此它能判断这次动作带来的效果是积极的还是消极的。
2、生成模型领域
人工智能通过对众多样本的采集,生成的模型具有很强的相似性。这就是说,若训练数据是脸部的图像,那么训练后得到的模型也是类似于脸的合成图片。
人工智能顶级专家 Ian Goodfellow为我们提出两种新思路:一个是生成器,它负责将输入的数据合成为新的内容;另一个是判别器,负责判断生成器生成内容的真假。这样一来,生成器必须反复学习合成的内容,直到判别器无法区分生成器内容的真伪。
3、记忆网络领域
为了让人工智能系统像人类一样适应各式各样的环境,它们必须持续不断地掌握新技能,并且学会应用这些技能。传统的神经网络很难做到这些要求。比如,当一个神经网络对A任务完成训练后,若是再训练它解决B任务,则网络模型就不再适用于A了。
目前,有一些网络结构能够让模型具备不同程度的记忆能力。长短期记忆网络可以处理和预测时间序列;渐进式神经网络,它学习各个独立模型之间的横向联系并提取共同的特征,以此来完成新的任务。
4、数据学习领域
一直以来,深度学习模型都是我们需要用大量的训练数据才能达到最佳的效果。离开大规模的训练数据,深度学习模型就不会达到最理想的效果。比如,当我们用人工智能系统解决数据缺乏的任务时,这时就会出现各种各样的问题。有种被称为迁移学习的方法,就是把训练好的模型迁移到新的任务中,这样问题就迎刃而解了。
5、仿真环境领域
若要将人工智能系统应用到实际生活中,那么人工智能必须具有适用性的特点。因此,开发数字环境来模拟真实的物理世界和行为,将为我们提供测试人工智能的机会。在这些模拟环境中的训练可以帮助我们很好的了解人工智能系统的学习原理,如何改进系统,也为我们提供了可以应用于真实环境的模型。
6、医疗技术领域
目前,在垂直领域的图像算法和自然语言处理技术已可基本满足医疗行业的需求,市场上出现了众多技术服务商,例如提供智能医学影像技术的德尚韵兴,研发人工智能细胞识别医学诊断系统的智微信科,提供智能辅助诊断服务平台的若水医疗,统计及处理医疗数据的易通天下等。尽管智能医疗在辅助诊疗、疾病预测、医疗影像辅助诊断、药物开发等方面发挥重要作用,但由于各医院之间医学影像数据、电子病历等不流通,导致企业与医院之间合作不透明等问题,使得技术发展与数据供给之间存在矛盾。
7、教育领域
科大讯飞、乂学教育等企业早已开始探索人工智能在教育领域的应用。通过图像识别,可以进行机器批改试卷、识题答题等;通过语音识别可以纠正、改进发音;而人机交互可以进行在线答疑解惑等。AI 和教育的结合一定程度上可以改善教育行业师资分布不均衡、费用高昂等问题,从工具层面给师生提供更有效率的学习方式,但还不能对教育内容产生较多实质性的影响。
8、物流管理领域
物流行业通过利用智能搜索、 推理规划、计算机视觉以及智能机器人等技术在运输、仓储、配送装卸等流程上已经进行了自动化改造,能够基本实现无人操作。比如利用大数据对商品进行智能配送规划,优化配置物流供给、需求匹配、物流资源等。目前物流行业大部分人力分布在“最后一公里”的配送环节,京东、苏宁、菜鸟争先研发无人车、无人机,力求抢占市场机会。
以上就是关于人工智能的应用领域之一是相关问题的回答。希望能帮到你,如有更多相关问题,您也可以联系我们的客服进行咨询,客服也会为您讲解更多精彩的知识和内容。
推荐阅读:
人工智能一种现代的方法第三版答案(人工智能一种现代的方法第三版答案网盘资源)
人工智能技术在教育中的应用(人工智能技术在教育中的应用现状)
messenger被好友屏蔽(messenger屏蔽好友消息)