关于AI的术语(有关ai的术语)
大家好!今天让创意岭的小编来大家介绍下关于关于AI的术语的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。
开始之前先推荐一个非常厉害的Ai人工智能工具,一键生成原创文章、方案、文案、工作计划、工作报告、论文、代码、作文、做题和对话答疑等等
只需要输入关键词,就能返回你想要的内容,有小程序、在线网页版、PC客户端和批量生成器
本文目录:
名词解释——人工智能
人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。
人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。
扩展资料:
AI的核心问题包括建构能够跟人类似甚至超越的推理、知识、规划、学习、交流、感知、移动和操作物体的能力等。人工智能当前仍然是该领域的长远目标。当前强人工智能已经有初步成果,甚至在一些影像识别、语言分析、棋类游戏等等单方面的能力达到了超越人类的水平。
而且人工智能的通用性代表着,能解决上述的问题的是一样的AI程序,无须重新开发算法就可以直接使用现有的AI完成任务,与人类的处理能力相同,但达到具备思考能力的统合强人工智能还需要时间研究,比较流行的方法包括统计方法,计算智能和传统意义的AI。
当前有大量的工具应用了人工智能,其中包括搜索和数学优化、逻辑推演。而基于仿生学、认知心理学,以及基于概率论和经济学的算法等等也在逐步探索当中。 思维来源于大脑,而思维控制行为,行为需要意志去实现,而思维又是对所有数据采集的整理,相当于数据库,所以人工智能最后会演变为机器替换人类。
参考资料来源:百度百科-人工智能
人工智能的基本术语
机器学习机器学习指的是计算机系统无需遵照显示的程序指令,而只是依靠暴露在数据中来提升自身性能的能力。机器学习关注的是“如何构建能够根据经验自动改进的计算机程序”。比如,给予机器学习系统一个关于交易时间、商家、地点、价格及交易是否正当等信用卡交易信息数据库,系统就会学习到可用来预测的信用卡欺诈的模式。机器学习本质上是跨学科的,他采用了计算机科学、统计学和人工智能等领域的技术。机器学习的应用范围非常广泛,针对那些产生庞大数据的活动,它几乎拥有改进一切性能的潜力。先如今,机器学习已经成为认知技术中最手可热的研究领域之一。深度学习深度学习在2006年被提出,是相对比较新的概念。深度学习是用于建立、模拟人脑进行分析学习的神经网络,并模仿人脑的机制来解释数据的一种机器学习技术。它的基本特点,是试图模仿大脑的神经元之间传递、处理信息的模式。显然,“深度学习”是与机器学习中的“神经网络”是强相关的,“神经网络”也是其主要的算法和手段;或者,我们可以将“深度学习”称之为“改良版的神经网络”算法。强化学习强化学习为一个代理(Agent)在一个环境里设计一系列动作(Actions)以获得最优的未来长期回报(Reward)。人工智能(ArtificialIntelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。
以上就是关于关于AI的术语相关问题的回答。希望能帮到你,如有更多相关问题,您也可以联系我们的客服进行咨询,客服也会为您讲解更多精彩的知识和内容。
推荐阅读:
以naturepark为题的手抄报(关于nature park的手抄报英语)