ChatGPT背后天价超算力(chs超级算力)
大家好!今天让创意岭的小编来大家介绍下关于ChatGPT背后天价超算力的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。
开始之前先推荐一个非常厉害的Ai人工智能工具,一键生成原创文章、方案、文案、工作计划、工作报告、论文、代码、作文、做题和对话答疑等等
只需要输入关键词,就能返回你想要的内容,有小程序、在线网页版、PC客户端和批量生成器
本文目录:
chatbots有哪些潜力?
ChatGPT其实并没有创新性可言,其出圈的关键在于选对了落脚点。也有人认为,市场对于ChatGPT过于乐观了。
为此,本次CNMO推出了“聊聊ChatGPT”系列专题,旨在让大家更好、更全面地了解ChatGPT,而本文,要跟大家聊的是“这些行业会搭上顺风车”。
ChatGPT本质上是一个对话模型,主要以文字方式互动,不仅可以通过人与人自然对话的方式进行交互外,还可以处理相对复杂的语言,可以完成包括自动文本生成、自动问答等在内的多种任务。ChatGPT亮相以来,被广泛应用在了聊天机器人、编写和调试计算机程序、文学相关领域的创作,更有甚者还用来写论文。可以看出,ChatGPT对各行各业都有所影响,那么哪些行业能抱上这根“大腿”呢?
ChatGPT让AI行业生机勃勃,在一定程度上也带动了自动驾驶行业、金融行业、翻译行业等发展。自动驾驶行业:毫末智行CEO顾维灏认为,ChatGPT的技术思路和自动驾驶认知决策的思路是不谋而合。他提出了人驾自监督认知大模型,让自动驾驶系统从人类反馈中学会选择和辨别,并稳定地输出最优解。
如果将ChatGPT作为车机系统,可为车辆提供语音识别、语音合成、对话处理等功能。目前汽车行业中较成熟的语音交互解决方案,识别率可以达到90%以上,但与ChatGPT相比还是差距过大。如果想让系统理解我们说的话,就得运用到NLP(自然语言处理)技术,而ChatGPT目前是自然语言类的天花板。如果将ChatGPT用于车机系统,一方面可以让车机更容易理解“长难句”,让驾驶更具趣味性
金融行业:招商银行此前发布了一篇名为《亲情信用卡温暖上市,ChatGPT首次诠释“人生逆旅,亲情无价”》的推文,被认为是金融行业首次尝试与ChatGPT搭档生产的宣传稿件。ChatGPT背后的“金主”——微软,曾在发布会上演示了全新功能——财报分析。微软在Edge浏览器打开了GAP公司15页的三季度财报PDF,利用ChatGPT实时总结核心点,并于Lululemon三季度财报做对比,各项指标对比结果飞速呈现。可以预见,ChatGPT如果用于金融领域,可以极大提高效率,减少出错。
翻译行业:随着全球化的加深,企业和个人越来越需要在全球范围内进行业务,这将导致对翻译和本地化服务的需求增加。ChatGPT在翻译行业属实“专业对口”,一来可以减少翻译人员的工作量,提高翻译效率;二来可以学习翻译历史数据,在此基础上生成翻译,改善翻译质量;三来由于ChatGPT可以自动完成翻译,可以降低翻译公司的人力成本。
ChatGPT的未来
ChatGPT的优势在于,可以做到用人们能理解的方式解释概念、传递事实,甚至还有“自己的想法”,但也存在着局限性。由于ChatGPT的能力上限是由奖励模型决定的,需要大量的语料来拟合真实世界,因此可能会出现“创造不存在的知识”等低级错误。
ChatGPT的发展离不开技术的应用和商业化,必须先聚焦于资源、资金高度集中和技术应用性强的特定领域。例如应用于实现自动化办公,由于需求量大,或许可能成为技术应用首先发展的领域。
chargpt是什么
Chargpt是OpenAI开发的一个大型预训练语言模型。
通俗一点说就是一个聊天机器人。它是GPT-3模型的变体,ChatGPT经过了训练,可以根据接收到的输入生成类似人类的文本响应,具有更自然、更多样化的特点。用户可以向它提出无数问题,而且通常会得到有用的答案。
ChatGPT背后的算法基于Transformer架构,这是一种使用自注意力机制处理输入数据的深度神经网络。Transformer架构广泛应用于语言翻译、文本摘要、问答等自然语言处理任务。
以ChatGPT为例,该模型在大量文本对话数据集上进行训练,并使用自我注意机制来学习类人对话的模式和结构。这使它能够生成与它所接收的输入相适应且相关的响应。
Chatgpt的特别功能:ChatGPT可用于创建能与用户进行对话的聊天机器人。ChatGPT可以进行微调,以回答特定类型的问题,例如与特定领域或主题相关的问题。ChatGPT可以用于创建与用户进行对话的虚拟代理或虚拟化身。ChatGPT可用于根据输入数据生成类似人类的文本响应。
Chatgpt是OpenAI开发的一个大型预训练语言模型,OpenAI是一个研发机构,于2015年由硅谷投资者山姆·阿尔特曼和亿万富翁埃隆·马斯克作为非营利机构成立,并吸引了包括风险资本家皮特·蒂尔在内的其他几个人的投资。2019年该集团创建了一个相关的营利性实体,以接纳外部投资。
AI大模型扎堆上线,你觉得谁能强势出圈?
撰文 / 涂彦平 编辑 / 黄大路 设计 / 赵昊然ChatGPT在这个春天霸占了中文互联网,普通人面对它多生出兴奋和焦虑交织的复杂情绪,而大公司不甘落后,纷纷宣布自己也在做类似的AI大模型。
继3月16日百度发布文心一言之后,4月7日,阿里云官宣大模型通义千问开始邀请测试。
4月8日,在人工智能大模型技术高峰论坛上,华为云人工智能领域首席科学家田奇分享了盘古大模型的进展及应用。他透露,华为盘古大模型正在推动人工智能开发从“作坊式”到“工业化”升级。
接下来,有多场大模型相关发布会扎堆举办。
4月10日,商汤“日日新SenseNova”大模型体系问世;4月11日,毫末智行自动驾驶生成式大模型DriveGPT雪湖·海若发布;由昆仑万维和奇点智源合作研发的天工大模型3.5发布在即,并将于4月17日启动邀请测试;5月6日,科大讯飞“1+N认知智能大模型”即将发布……
互联网巨头、人工智能公司、智能硬件公司、自动驾驶公司等各方力量,都积极参与到大模型这一场盛宴中来。
行业监管也迅速出手。4月11日,国家网信办发布通知,就《生成式人工智能服务管理办法(征求意见稿)》面向社会公开征求意见。
根据计算机科学家、自然语言模型专家吴军的说法,ChatGPT背后是一个叫做语言模型的数学模型在发挥作用,这项语言模型技术早在1972年就已经有了,是由他的导师弗莱德里克·贾里尼克(Fred Jelinek)在IBM期间带领团队研发出来的。
只是到了今天,由于算力不断提升,语言模型已经从最初基于概率预测的模型发展到基于Transformer架构的预训练语言模型,并逐步走向大模型的时代。
复旦大学计算机学院教授、MOSS系统负责人邱锡鹏曾这样描述大模型的能力飞跃:“当模型规模较小时,模型的性能和参数大致符合比例定律,即模型的性能提升和参数增长基本呈线性关系。然而,当 GPT-3/ChatGPT 这种千亿级别的大规模模型被提出后,人们发现其可以打破比例定律,实现模型能力质的飞跃。这些能力也被称为大模型的‘涌现能力’(如理解人类指令等)。”
每当有革命性的技术诞生,无一不是由其在具体行业的商用化应用来实质性地推动行业进步。作为连接技术生态和商业生态的桥梁,大模型也将在很多行业应用落地。
只是,这波来势凶猛的大模型热,究竟会催生万物生长改变万千业态,还是继区块链、元宇宙之后又一个看上去很美的泡沫?
无限想象空间?特斯拉将Transformer大模型引入自动驾驶领域中,拉开了AI大模型在自动驾驶领域应用的开端。大模型在自动驾驶行业的应用将提升系统的感知和决策能力,已经被视为自动驾驶能力提升的核心驱动力。
4月2日,百度正式发布百度自动驾驶云Apollo Cloud2.0。百度智能驾驶事业群副总裁、智能网联业务总经理高果荣表示,Apollo Cloud2.0基于大模型实现了自动驾驶数据智能的搜索引擎,大模型的能力积累了自动驾驶数据智能的搜索引擎,从海量数据中能够精准找到自动驾驶面向不同场景的数据。
“在自动驾驶领域,BEV(Bird''s Eye View,鸟瞰视图)是当前主流的技术路线,未来可以朝着多模态、通用智能的方向发展。”商汤科技联合创始人、首席科学家、绝影智能汽车事业群总裁王晓刚表示。
他认为,在通用人工智能时代,输入提示词和多模态内容,就可以生成多模态的数据,更重要的是,可以用自然语言生成对任务的描述,用非常灵活的方式覆盖大量的长尾问题和开放性的任务,甚至是一些主观描述。
王晓刚举了一个例子来说明AI和AGI处理任务的不同。给定一张图片,判断是否需要减速,AI和AGI的反应有什么不一样呢?
现有的AI系统,会首先做物体检测,然后再物体框里做文字识别,最后做决策。整个过程中每一个模块都是事先定义好的任务。
而在通用人工智能下,给定图像,人们只需要用自然语言去问问题,比如,“这个图标是什么意思?我们应该做什么?”模型本身不会发生变化,它会通过自然语言的方式给出一系列逻辑推理,最后得出结论。比如,它会说,“前面限速30公里/小时”“前面100米是学校区域”“有小孩”“应该小心驾驶”“将车速降到30公里/小时以下”等。
王晓刚还指出,智能驾驶汽车领域有“数据飞轮”的说法,通用人工智能时代则会产生“智慧飞轮”,人和模型之间可以互动,通过人的反馈,模型能更好地理解人需要它展示什么样的能力,而去解锁更多技能。从数据飞轮升级到智慧飞轮,可以实现人机共智。
商汤基于多模态大模型,可做到数据的感知闭环和决策闭环。从前端自动采集高质量的数据,到利用大模型进行自动化的数据标注和产品检测,“能够几百倍地提升模型迭代的效率并降低成本”。
华为云EI服务产品部总裁尤鹏也表示,“整个数据标注是整个自动驾驶领域准确率、效率、成本最高的一部分”,这部分的效率直接影响到自动驾驶算法和驾驶等级的提升。他透露,华为云正在做预训练标注大模型,支撑后续的自动驾驶算法的训练,可能会在几个月后会发布。
除了自动驾驶,很多行业人士相信,智能座舱也将在大模型的赋能下有着质的提升,尤其将为人机交互打开新的大门。
百度集团资深副总裁、智能驾驶事业群组总裁李震宇认为人工智能将重塑汽车空间,人与汽车的关系将会截然不同。“未来,我们相信每辆汽车都会搭载一个数字虚拟人。未来的数字虚拟人不仅可以模拟人的外形,还可以注入灵魂,真正拥有对人类意图的理解……同时也不再是单一以前场景的车机助理的身份,而会转化成全能助理。”
他相信,随着通用人工智能的发展,智能座舱将成为汽车创新的新焦点,将会重塑其空间,届时用户和车企之间的距离将缩短,用户和品牌之间的关系将更为紧密。“拥有自然语言交流能力的智能车可以让车企与用户直接进行一对一的对话。当汽车成为全能助理后,车企将面对用户需求爆发式的增长。”
王晓刚称,在智能座舱板块,通用人工智能可以使基模型具备对空间环境的理解、用户状态的感知、多模态指令解析及多轮逻辑对话、内容生成等一系列能力,进而赋能包括情绪感知、智能助手、基于情感的对话、创意内容生成、个性交互等一系列功能,不断地提升个性化体验,进一步拓展应用场景。
“智能汽车是通用人工智能实现闭环的一个非常好的场景,我们已经有人机共驾。”王晓刚表示,“未来我们希望车和模型之间能够产生更有效的互动,那就完成了从人到车到模型这样一个互动闭环,能够让通用人工智能为我们提供更好的驾乘体验,解锁无限的想象空间。”
只是,消费者距离这种有着“无限的想象空间”的汽车生活还有多远,没有人说得出答案。
希望在于将来想象是美好的,不过,挑战也随之而来。
“过去我们一年要做大概1000万帧的自动驾驶图像的人工标定,请外包公司进行标定,大概6到8元钱一张,一年的成本接近一个亿。但是当我们使用软件2.0的大模型通过训练的方式进行自动化标定,效果会非常可怕——过去需要用一年做的事情基本上三个小时就能完成,效率是人的1000倍。”理想汽车创始人、董事长兼CEO李想OK表示,“对于员工来说,他们会感觉用拳头打架遇到了拿枪的。”
他认为,在这样的状况下,如何能够让软件2.0和现有人才进行融合,为他们提供怎样的全新工作流程、激励机制,如何去选用任用人才,给全行业提出了挑战。
更大的挑战可能还在于中外大模型技术的差距。
3月25日,在2023中国发展高层论坛上,360创始人、董事长兼CEO周鸿祎表示,目前来看,中国大语言模型和GPT-4的差距在两到三年时间,GPT的技术方向已经明确,不存在难以逾越的技术障碍,中国在场景化、工程化、产品化、商业化方面拥有巨大优势,应当坚持长期主义精神,迎头赶上。
4月9日,由中国人工智能学会主办的人工智能大模型技术高峰论坛上,融汇金信CTO李长亮认为,未来做通用大模型的和做场景的分层很清晰,没有中间态。做通用大模型需要大量的算力、数据、人员、资源等,只有有很强技术储备和资源调配能力的大公司才能做,中小创业公司在这条赛道上会很难;在垂直应用上,基于大模型的发展,结合场景的know-how做一些创新应用,则会有无数的企业诞生。
他还认为,中国在大模型这个产业赛道上是很有机会的,因为在中文场景下,我们更懂我们自己的语言,沉淀了大量的中文知识,会迅速追赶并超越。
我们也注意到,计算机科学家、自然语言模型专家吴军在4月3日晚得到的一场直播中则给当下的ChatGPT热泼了盆冷水。他直言ChatGPT在中国被过度炒作了,中国的大部分研究机构是做不了的。
在他看来,ChatGPT的原理很简单,但是在工程上要想做到,其实蛮困难,因为ChatGPT太耗资源,光硬件的成本就要差不多10亿美元,这还没算电钱。ChatGPT训练一次要耗多少电?吴军的说法是,大概是3000辆特斯拉的电动汽车,每辆跑到20万英里,把它跑死,这么大的耗电量,才够训练一次。这是非常花钱的一件事。
他的结论是,ChatGPT不算是一项新的技术革命,带不来什么新机会,最后可能的一个结果就是给几家大的做云计算的公司交钱。
由ChatGPT带起的大模型热,最终会在各行各业开花结果,还是盛名之下其实难副?不妨把这个问题交给时间。
本文由汽车商业评论原创出品
转载或内容合作请联系说明
违规转载必究
【本文来自易车号作者汽车商业评论,版权归作者所有,任何形式转载请联系作者。内容仅代表作者观点,与易车无关】
AI的「iPhone 时刻」,英伟达的「核弹发射」
近日,一年一度的英伟达 GTC 大会再度拉开帷幕。穿着标志性皮夹克的「AI 黄仁勋」向开发者介绍了英伟达在硬件和 AI 领域最新的进展。
年初的 CES 刚刚过去,对于英伟达来说,短时间就要拿出很多新的东西,挑战不小。但是从 CES 到现在,短短 3 个月里,全球 AI 领域发生了翻天覆地的变化,这也成了英伟达的新契机。
AI的 「iPhone 时刻」
「AI 的『iPhone 时刻』已经到来」,老黄这样形容最近 AI 行业的「大事件」。
2016年8月,黄仁勋将当年全球第一台 AI 超算捐给了 OpenAI。6年多后,OpenAI 带着 ChatGPT搅动了整个地球。大量的新型创业公司希望借助于这股东风来颠覆既有的传统商业模式,而许多传统的科技巨头也在纷纷拥抱 AI,来维系自己的领先地位。
在 2023GTC 大会上,英伟达宣布了将和谷歌云、微软 Azure、甲骨文云联手推出 DGX 云服务。ChatGPT 将从目前使用的 A100 GPU 升级到使用微软 Azure 超级计算机用上 H100,理论上回复速度将快 10 倍。
毫无疑问,ChatGPT 将会引发新一轮的人工智能革命,其对整个汽车行业也会产生深远的影响。ChatGPT 模型也将逐渐从人机沟通逐步赋能包括自动驾驶在内的智能网联系统的各个环节。在百度推出「中国版 ChatGPT」的「文心一言」后,吸引了包括集度、长安、吉利、长城、东风日产、零跑等车企纷纷抛来合作的橄榄枝。
而在 ChatGPT 以及其他一众 AI 大模型技术的背后,都离不开英伟达在算力层面的大力支持。自从英伟达向 OpenAI 交付首台 DGX 超级计算机后,目前台 DGX 超级计算机已经成为市场上最主流的产品。最新 DGX 超级计算机的核心,是英伟达的 8 块 H100 模组。当 ChatGPT 这样的 AI 工具逐步渗透车企之后,最大的赢家之一依然会是英伟达。
联想 x 英伟达,汽车行业新亮点?
对于英伟达来说,在这次 GTC 上,和车企的合作,尤其是自动驾驶领域着墨不多。但这并不影响未来汽车领域的业务会成为英伟达的一个快速增长的新引擎。
作为如今全球可以和特斯拉齐平、最为炙手可热的新能源车企之一,比亚迪与英伟达进一步扩大合作当消息得到了官宣。比亚迪的下一代王朝系列和海洋系列中的多款车型都将使用英伟达 DRIVE Orin 高性能计算平台。其中,在今年二季度,比亚迪首款采用英伟达芯片且搭载了激光雷达的车型就将上市。
在王传福看来,作为新能源汽车的上半场,比亚迪在电动化方面凭借刀片电池赚得盆满钵满;而在新能源汽车的下半场,比亚迪选择了英伟达作为智能化方面的最重要合作伙伴之一,也是希望在芯片算力层面,能够走在市场的最前列。除了 Drive Orin 平台之外,在今年 1 月份的 CES 展上,比亚迪也作为首批合作企业,将落地英伟达旗下 GeForce NOW 云游戏服务计划。而后者也是英伟达进军智能座舱市场的最新布局。
不过让我们惊讶的是,联想成为首家采用英伟达新的自动驾驶域控制器的一级制造商,在不远的未来,其域控制器将采用英伟达的 SoC 芯片。
对于联想这样从事电脑服务器的硬件公司,进军智能电动车的高算力中央计算平台,既在意料之外,也是情理之中。对于联想来说,布局智能座舱、智能驾驶和中央计算平台等领域是对现有技术和产品的延伸,虽然会面临一定的困难,但是联想并不是从零开始,过往的技术积累可以发挥不小的作用。众所周知,联想一直没有涉足芯片领域,因此引入英伟达的雷神芯片将帮助联想补齐最重要的一块短板。
根据英伟达的介绍,雷神这款 SoC 芯片内部拥有 770 亿个晶体管,可以实现 2000 TOPS 的 AI 算力,或者是 2000 TFLOPs,其在算力上不仅已经远远超过了满足高等级自动驾驶的需要,已经完全有能力承担起汽车高算力中央计算平台的重任。这款芯片将在 2025 年大规模量产,而这个也和联想在 2025 年推出高算力的中央计算平台的时间表相吻合。
在此之前,联想会推出算力达到 32TOPS 的行泊一体方案,而这也是目前被不少国内车企,尤其是在低成本车型上广泛应用的驾驶辅助解决方案,市场前景较为看好。
不过对于国内汽车领域来说,已经有不少像联想这样的跨界玩家入局,甚至已经上车量产;对于联想来说,除了首发英伟达自动驾驶域控制器的一级制造商的先发优势外,还有哪些优势能让它赢得市场,还是未知数。
Omniverse,英伟达征战车圈的新工具
在汽车行业,英伟达的触角不仅仅是提供自动驾驶算力平台以及中央计算平台,其早已经将目光投向了汽车零部件的设计以及整车制造领域。通过赋能汽车行业的虚拟制造和虚拟工厂,英伟达希望让汽车设计和生产的数字化进程再上一个新的台阶。
在过去几十年里,CATIA、UG 这些软件已经成为工程师必不可少的助手。整车企业使用这些虚拟仿真软件,通过数字化模拟的手段提前对后期的成品进行预览的方法来进行前期的零部件设计以及整车的总布置工作。如果没有前期的虚拟仿真,后期重新设计不仅成本较高,而且很有可能造成项目的时间节点的延误。
但最近十多年来,这些软件都没有突破性的革命成为席卷全球的 AI 浪潮的「法外之地」,没有能够对整车企业的零部件设计提供更大的帮助。
为此,英伟达打造了 Omniverse,它说到底是一个虚拟世界仿真引擎,不仅可以精确反映真实的物理世界,同时也能够遵守物理学定理。所以 Omniverse 不仅能够在前期验证零部件与整车的装配关系,避免后期的包括动态干涉在内的各种装配上的问题,同时也能指导工厂设计,并帮助整车企业对工厂布局进行持续优化。
对于绝大部分希望全面转型电动车的传统车企来说,工厂的改造任务非常繁重。前期虚拟阶段验证地越充分,后期实际占用工厂时间就会越少,而节约出来的时间就可以被用来进行生产。
根据 GTC 现场黄仁勋的介绍,宝马时下正在使用 Omniverse 来对全球 30 家工厂的运营进行规划。在每座工厂正式投入量产前两年,宝马就会使用 Omniverse 模拟建造一座完整的虚拟工厂,并进行持续的调整和优化,以此避免后期工厂建设完毕之后再进行比较大规模的调整,进而影响生产。
宝马之外,包括沃尔沃、通用汽车、奔驰、捷豹路虎、Lotus、丰田等都已经是英伟达 Omniverse 的用户。
从某种程度上来说,未来英伟达很有可能利用自己的优势地位来逐步取代我们熟悉的 CATITA 和 UG,成为整车企业的数字化设计工具。而这个所能撬动的,同样是一个体量巨大且前景非常可观的市场。
最后
「生成式 AI 正在推动 AI 的快速应用,并重塑无数行业。」 在 ChatGPT 之后,相信没有人再会去怀疑这句话。汽车行业只是英伟达当前涉足的一个产业而已,可能深深埋藏在老黄心底的,是让 AI 去赋能整个社会的方方面面,以此来推动全世界科技的进步和产业发展的梦想。
AI 的「iPhone 时刻」,也正是英伟达「核弹发射」的时刻。
【本文来自易车号作者GeekCar极客汽车,版权归作者所有,任何形式转载请联系作者。内容仅代表作者观点,与易车无关】
chatpgt是什么
ChatGPT是OpenAI开发的大型预训练语言模型。这是GPT-3模型的一个变体,经过训练可以在对话中生成类似人类的文本响应。
ChatGPT背后的算法基于Transformer架构,这是一种使用自注意力机制处理输入数据的深度神经网络。Transformer架构广泛应用于语言翻译、文本摘要、问答等自然语言处理任务。ChatGPT可用于创建能与用户进行对话的聊天机器人。这对客户服务很有用,因为它提供了有用的信息或只是为了好玩。
ChatGPT使用方法和注意事项:
支持中文和英文,都可以问,它不是Siri这种机器人,他是一种生产力的工具,要把它当作真实的人来对话,可以让它改进,支持上下文多轮对话,放心大胆的问,每次回答的字数有应该有限制,可以使用“继续问”等来追问,它会继续写。
AI届已经进入新的范式,学会提问题会越来越重要
以上就是关于ChatGPT背后天价超算力相关问题的回答。希望能帮到你,如有更多相关问题,您也可以联系我们的客服进行咨询,客服也会为您讲解更多精彩的知识和内容。
推荐阅读:
关于chatGPT的看法(关于chatGPT的看法的议论文)
中国四大地理地区(中国四大地理地区的地形气候特征和主要河流矿产农作物)