高中数学探究性教学设计(高中数学探究性教学设计模板)
大家好!今天让小编来大家介绍下关于高中数学探究性教学设计的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。
创意岭作为行业内优秀企业,服务客户遍布全国,留学、移民相关业务请拨打175-8598-2043,或微信:1454722008
本文目录:
一、求高二数学教案
高中数学合集百度网盘下载
链接:https://pan.baidu.com/s/1znmI8mJTas01m1m03zCRfQ
提取码:1234
简介:高中数学优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。
二、高二数学《二项式定理》教学设计
教学设计是作为教者,基于对学生和教学任务的分析,而对教学目标、教学方法、教学材料、教学进度、课程评估等做出系统设计的一门学科。 教学设计者经常使用教学技术以改进教学。下面是我为大家整理的高二数学《二项式定理》教学设计,欢迎参考!
高二数学《二项式定理》教学设计
【教学设计思想】
教学设计思想
现代教学的核心是"以学生的发展为本",注重学生的学习状态和情感体验,注重教学过程中学生主体地位的体现和主体作用的发挥,强调尊重学生人格和个性,鼓励发现、探究与质疑,鼓励培养学生的创新精神和实践能力.
二项式定理这部分内容比较枯燥,如何发挥学生的主体作用,使学生自己探究学习知识、建构知识网络,是本节课教学设计的核心.
我采用启发探究式教学方式:
一是从实际应用问题引入课题。这里体现了新课程的数学应用意识的理念,使学生体会到数学不仅是为了学数学,还可以学以致用,用来解决现实生活的问题.
二是从特殊到一般。面对一般问题,学生会想到从特殊情况入手,让学生自己探究=1,2,3,4,...时二项展开式的规律,观察发现二项式定理的基本内容.
三是采用小组合作、探究的方式。小组内的同学共同归纳二项式定理的内容,由特殊推广到一般.
四是教师的启发与学生的探究恰当结合。本节课的难点在于确定二项展开式中,每一项的二项式系数,对于平行班的学生,真正能独立归纳出来,有一定的困难,教师在此时的引导启发,就显得尤为重要.
本节课,学生通过对=1,2,3,4,...时二项展开式的观察,归纳、猜想到为任意正整数时的二项式定理内容,并真正理解二项式系数的意义。这样设计的目的是为了让学生参与知识的发生、发展、深化的过程,学习体会应用"观察、归纳、猜想、证明"的科学思维方法的过程,提高数学修养.
本节课对二项式定理特点及规律的总结和归纳,有利于学生对二项式定理的识记,同时还可以使学生体验数学公式的对称美、和谐美.
学生情况分析
学生为平行班学生,有一定的数学基础.学生理解组合及组合数的概念,掌握了多项式乘法的运算法则,有一定的归纳猜想能力,能顺利完成课时计划内容.
学生有过探究、交流的课堂教学的尝试.
教学流程框图
实际问题, 引入课题
合作探究, 发现规律
成果交流, 教师引导
推广一般, 内容呈现
定理应用, 初步体验
归纳小结, 巩固提高
教学诊断分析
在本节内容的学习中,学生容易了解的内容是二项展开式的项数、指数和系数的规律,即项数:项;指数:字母,的指数和为,字母的指数由递减至0,同时,字母的指数由0递增至;二项式系数:下标为,上标由递增至;
容易产生误解的内容是:通项指的是第r+1项;通项的二项式系数是,与该项的系数是不同的概念(在第二课时会进行探讨)。【教学方式及预期效果分析】
本节课采用启发探究式教学.通过学生小组合作交流、师生对话交流等方式,引导学生自主探究,合作交流.
1.课前准备工作
为便于管理和探究,将学生随机分组,每组3-4人左右.
2.课堂探究过程
探究内容为二项式定理的内涵,包括项数、指数、系数等方面的规律内容.
采用小组内合作探究方式,组间交流、置疑、点评.
组内探究要求有分工,有合作,有交流.并推选交流发言代表.
在探究过程中,学生和组内其他同学进行探讨和辩论,通过不同观点的交锋来补充、修正或加深自己对当前问题的理解,从而完善自己的研究成果.
3.课堂交流过程
(1)小组汇报
小组内推选汇报交流发言代表,其他同学自由补充.
(2)组间置疑
小组汇报后,对不同意见或不清楚的地方,提出置疑.
(3)师生点评
对汇报展示与置疑的同学进行点评,及时鼓励、表扬,保持学生学习热情,通过交流,学习他人的研究成果,充实自己.
(4)教师引导
对部分内容,如二项式系数的确定,教师适时,适度引导.
4.预期效果分析:通过本节课的学习,在知识面上,期望学生能够理解二项式定理及其推导方法,识记二项展开式的有关特征,能对二项式定理进行简单应用;在思想和能力面上,期望通过教师指导下的探究活动,使学生经历数学思维过程,熟悉理解"观察-归纳-猜想-证明"的思维方法,培养合作的意识,获得学习和成功的体验;通过对二项式定理内容的研究,使学生体验特殊到一般发现规律,一般到特殊指导实践的认识事物过程,通过对二项展开式结构特点的观察,使学生体验数学公式的对称美、和谐美.
【教学目标与教学内容】
本节课时高中数学第二册(下A)10.4二项式定理第一节课.
本节课的学生起点:学生已经学习了组合的基本知识,初中学习了多项式乘法.
本节课是在组合和多项式乘法的基础上,进一步研究学习二项式定理的内容.这一内容我共安排两课时,这是第一课时.
1.教材分析:
二项式定理是初中学习的多项式乘法的继续,它所研究的是一种特殊的多项式--二项式的乘方的展开式.这一小节与很多内容都有着密切的联系,特别是它在本章的学习中起着乘上启下的作用.学习本小节的意义在于:①二项式定理与概率理论中的三大概率分布之一的二项分布有其内在联系,本小节是学习概率知识及概率统计的准备知识;②二项式系数都是一些特殊的组合数,利用二项式定理可以得到关于组合数的一些恒等式,从而深化对组合数的认识;③基于二项展开式与多项式乘法的联系,本小节的学习可对初中学习的多项式的变形起到复习、深化的作用;④二项式定理是解决某些整除性、近似计算等问题的一种方法.
教材的安排:教材中是通过取一些特殊值(1,2,3,4)的基础上,观察归纳出二项式定理,强调要分析清楚式子展开并进行同类项合并后有哪些项及各项系数的一些规律,教材采用的是不完全归纳法,没有进行严谨的证明.教材随后安排了四道例题,是对二项式定理的简单应用.
重点:二项式定理的内容及应用
难点:二项式定理的推导过程及内涵
2.内容分析:对二项式定理的理解和掌握,要从项数、系数、指数、通项等方面的特征去熟悉它的展开式.
3.教学目标:
知识技能:理解二项式定理及其推导方法,识记二项展开式的有关特征,能对二项式定理进行简单应用.
过程方法:通过教师指导下的探究活动,经历数学思维过程,熟悉理解"观察-归纳-猜想-证明"的思维方法,养成合作的意识,获得学习和成功的体验.
情感、态度和价值观:通过对二项式定理内容的研究,体验特殊到一般发现规律,一般到特殊指导实践的认识事物过程;通过对二项展开式结构特点的观察,体验数学公式的对称美、和谐美.
4.教学过程
一、设置情境,引入课题
问题 某人投资10万元,有两种获利的可能供选择.一种是年利率12%,按单利计算,10年后收回本金和利息.另一种年利率10%,按每年复利一次计算,10年后收回本金和利息.
试问,哪一种投资更有利?
分析:本金10万元,年利率12%,按单利计算,10年后的本利和是
10×(1+12%×10)=22(万元)
本金10万元,年利率10%,按每年复利一次计算,10年后的本利和是
那么如何计算的值呢?能否在不借助计算器的情况下,快速、准确地求出其近似值呢?这就得研究形如的展开式.
二、探索研究二项式定理的内容
问题:的展开式有什么特点?你能将它展开吗?试一试.
[学生分组探究]
学生可能的探究方法1:由
......
学生可能通过具体的例子来展开说明,
如:或学生归纳过程可能如下:
以为例的展开式的分析过程:容易看到,等号右边的积的展开式的每一项,是从每个括号里任取一个字母的乘积,因而各项都是4次式,即展开式应有下面形式的各项:.
[学生可能归纳出来:(1)每一项中字母,的指数之间的关系(2)项的个数有项]
在上面4个括号中:
每个都不取的情况有1种,即种,所以的系数是;
恰有1个取的情况下有种,所以的系数是;
恰有2个取的情况下有种,所以的系数是;
恰有3个取的情况下有种,所以的系数是;
4个都取的情况下有种,所以的系数是;
因此.
[归纳、猜想]教师根据情况进行指导和引导,尤其是各项二项式系数的确定,教师要从各项中,指数的含义如来引导,并要求学生说明怎么得到这些项?教师可以通过电脑演示各形式项的形成过程,将学生的思维过程展示.
学生可能的探究方法2:
,共个,依据多项式乘法,直接写出各项.
[学生成果展示,可通过具体实例:通过投影、板书或口述]
问题:希望学生得到的规律
(1) 项数:项;
(2) 指数:字母,的指数和为,字母的指数由递减至,同时,字母的指数由0递增至;
(3) 二项式系数是
(4) 通项:
[板书(1),(2)]
[规律(3)得到后,板书]
[规律(4)得到后,补全二项式定理板书]
教师引导中,可能用到的引导问题:
(1) 将展开,有多少项?
(2) 每一项中,字母,的指数有什么特点?
(3) 字母,的指数的含义是什么?是怎样得到的?
(4) 如何确定的系数?
教师引导学生观察二项式定理,从以下几方面强调:
(1) 项数:项;
(2) 指数:字母,的指数和为,字母的指数由递减至0,同时,字母的指数由0递增至;
(3) 二项式系数:下标为,上标由递增至;
(4) 通项:指的是第r+1项,该项的二项式系数是
(5) 公式所表示的定理叫做二项式定理,右边的多项式叫做的二项展开式,上面的定理是用不完全归纳法得到的,将来可以用数学归纳法进行严格证明.
三、二项式定理的应用
1.解决本节课开始提出的问题.
解:
由此可见,按年利率10%每年复利一次计算的要比年利率12%单利计算更有利,10年后多得利息2.5万元.
备选例题
2.展开
解:思考1.第三项的系数是多少?
思考2.第三项的二项式系数是多少?你能得到什么结论?
[板书:.二项式系数与项的系数是两个不同概念.]
思考3.若本例只求第三项的二项式系数,你还可以怎么处理?哪种方法更好?
四、归纳小结
1.学生的学习体会与感悟;
2.教师强调:
(1)主要探究方法:从特殊到一般再回到特殊的思想方法
(2)从特殊情况入手,"观察--归纳--猜想--证明"的思维方法,是人们发现事物规律的重要方法之一,要养成"大胆猜想,严谨论证"的良好习惯.
(3)二项式定理每一项中字母,的指数和为,的指数从递减至0同时的指数由0递增至,体现数学的对称美、和谐美.二项式系数还有哪些规律呢?希望同学们在课下继续研究、能够有新的发现.
五、作业P121 习题10.4 2,4,5
【自评反馈与反思】
1.探究与合作是本节课的亮点
本节课采用探究式教学方式,注重学生的学习状态和情感体验,注重教学过程中学生主体地位的体现和主体作用的发挥,尊重学生人格和个性,鼓励发现、探究与质疑,符合"以学生的发展为本"新课程理念.
本课采用小组合作、探究的方式,学生从特殊情况入手,探究=1,2,3,4,...时二项展开式的规律,观察发现二项式定理的基本内容,再推广到一般.(强调证明,但不要求证明)
这样,本课做到了以学生为主体,学生通过自主与合作的探究学习,经历从特殊到一般的学习过程.在接受、掌握知识的同时,学生的学习能力与思维方法得到发展,科学思维修养获得了提高,合作的意识得到加强.
2.德育渗透恰当,适时适度
通过对二项式定理内容的研究,学生体验了从特殊到一般发现规律,从一般到特殊的指导实践的认识事物过程.通过对二项展开式结构特点的观察,学生体验到数学公式的对称美、和谐美.
本课有意识的培养学生的数学应用意识.新课程理念中强调"培养学生的数学应用意识",本节课正是由实际问题的引入为开始,又以问题的最终解决为结局,数学的应用贯穿整个课堂,突出了"应用意识"的培养,符合新课程理念.
突出数学思维方法与学习方法的指导.数学有两类猜想,一是归纳(不完全归纳),一是类比.本节课充分体现数学的"观察归纳猜想证明"的思维方法:首先由学生探究=1,2,3,...时二项展开式的特点,发现二项展开式的项数、指数及系数的基本规律;然后进一步归纳、猜想出当为任意正整数时二项展开式的基本规律(强调应该证明,由于知识的局限,以后再证明),这样体现了从特殊到一般的辩证过程.
3.课后反思
(1)二项式系数的确定,对平行班的学生来说,如果没有教师的适时,适度的引导,学生如何探究归纳,能否独立研究出来?
三、浅谈如何进行高中数学有效教学设计
新课标指出,新课程下的教学不仅要使学生获得必需的数学基础知识和基本技能,而且要使学生的能力和思维方法得到改善,同时要使学生的道德情感、价值观念、个性品质等得到健康的发展。其中基础知识和基本技能不仅是学生今后学习的必要准备,而且是其适应现代生活和未来发展的基础。因此作为巩固知识、熟练技能的练习课必须增强目标的明确性,要对知识理解的标准情景和变式情景做到心中有数;要对知识掌握的深浅度以及与已有知识的贯通与联系,作出预先的考虑与估计;要对知识运用的熟练程度作出精心安排和把握,对解决这些问题的对策也应该做到事先有独到的考虑。最忌无的放矢,为练习而练习,甚至泡制“题海”。 第一,要深入钻研教材、大纲,确定本阶段教材的重点和难点。第二,要深入研究学生学习的实际情况。
四、高中数学基本不等式教案设计
基本不等式是主要应用于求某些函数的最值及证明的不等式。其表述为:两个正实数的算术平均数大于或等于它们的几何平均数。接下来是我为大家整理的高中数学基本不等式教案设计,希望大家喜欢!
高中数学基本不等式教案设计一
教材分析
本节课是在系统的学习了不等关系和不等式性质,掌握了不等式性质的基础上展开的,作为重要的基本不等式之一,为后续的学习奠定基础。 要进一步了解不等式的性质及运用,研究最值问题,此时基本不等式是必不可缺的。基本不等式在知识体系中起了承上启下的作用,同时在生活及生产实际中有着广泛的应用,因此它也是对学生进行情感价值观 教育 的好素材,所以基本不等式应重点研究。
教学中注意用新课程理念处理教材,学生的数学学习活动不仅要接受、记忆、模仿和练习,而且要自主探索、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程。 通过本节学习体会数学来源于生活,提高学习数学的乐趣。
课程目标分析
依据《新课程标准》对《不等式》学段的目标要求和学生的实际情况,特确定如下目标:
1、知识与能力目标:理解掌握基本不等式,并能运用基本不等式解决一些简单的求最值问题;理解算数平均数与几何平均数的概念,学会构造条件使用基本不等式;培养学生探究能力以及分析问题解决问题的能力。
2、过程与 方法 目标:按照创设情景,提出问题→ 剖析归纳证明→ 几何解释→ 应用(最值的求法、实际问题的解决)的过程呈现。启动观察、分析、归纳、 总结 、抽象概括等思维活动,培养学生的思维能力,体会数学概念的 学习方法 ,通过运用多媒体的教学手段,引领学生主动探索基本不等式性质,体会学习数学规律的方法,体验成功的乐趣。
3、情感与态度目标:通过问题情境的设置,使学生认识到数学是从实际中来,培养学生用数学的眼光看世界,通过数学思维认知世界,从而培养学生善于思考、勤于动手的良好品质。
教学重、难点分析
重点:应用数形结合的思想理解基本不等式,并从不同角度探索基本不等式 的证明过程及应用。
难点:1、基本不等式成立时的三个限制条件(简称一正、二定、三相等);
2、利用基本不等式求解实际问题中的最大值和最小值。
教法分析
本节课采用观察——感知——抽象——归纳——探究;启发诱导、讲练结合的 教学方法 ,以学生为主体,以基本不等式为主线,从实际问题出发,放手让学生探究思索。以现代信息技术多媒体课件作为教学辅助手段,加深学生对基本不等式的理解。
教学准备
多媒体课件、板书
教学过程
教学过程设计以问题为中心,以探究解决问题的方法为主线展开。这种安排强调过程,符合学生的认知规律,使数学教学过程成为学生对知识的再创造、再发现的过程,从而培养学生的创新意识。
具体过程安排如下:
创设情景,提出问题;
设计意图:数学教育必须基于学生的“数学现实”,现实情境问题是数学教学的平台,数学教师的任务之一就是帮助学生构造数学现实,并在此基础上发展他们的数学现实.基于此,设置如下情境:
上图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客。
[问]你能在这个图中找出一些相等关系或不等关系吗?
本背景意图在于利用图中相关面积间存在的数量关系,抽象出不等式 。在此基础上,引导学生认识基本不等式。
二、抽象归纳:
一般地,对于任意实数a,b,有 ,当且仅当a=b时,等号成立。
[问] 你能给出它的证明吗?
学生在黑板上板书。
特别地,当a>0,b>0时,在不等式 中,以 、 分别代替a、b,得到什么?
设计依据:类比是学习数学的一种重要方法,此环节不仅让学生理解了基本不等式不等式的来源,突破了重点和难点,而且感受了其中的函数思想,为今后学习奠定基础.
答案: 。
【归纳总结】
如果a,b都是正数,那么 ,当且仅当a=b时,等号成立。
我们称此不等式为基本不等式。 其中 称为a,b的算术平均数, 称为a,b的几何平均数。
三、理解升华:
1、文字语言叙述:
两个正数的算术平均数不小于它们的几何平均数。
2、联想数列的知识理解基本不等式
已知a,b是正数,A是a,b的等差中项,G是a,b的正的等比中项,A与G有无确定的大小关系?
两个正数的等差中项不小于它们正的等比中项。
3、符号语言叙述:
若 ,则有 ,当且仅当a=b时, 。
[问] 怎样理解“当且仅当”?(学生小组讨论,交流看法,师生总结)
“当且仅当a=b时,等号成立”的含义是:
高中数学基本不等式教案设计二
一、教材分析
1、本节教材的地位和作用
“基本不等式” 是必修5的重点内容,在课本封面上就体现出来了(展示课本和参考书封面)。它是在学完“不等式的性质”、“不等式的解法”及“线性规划”的基础上对不等式的进一步研究.在不等式的证明和求最值过程中有着广泛的应用。求最值又是高考的 热点 。同时本节知识又渗透了数形结合、化归等重要数学思想,有利于培养学生良好的思维品质。
2、 教学目标
(1)知识目标:探索基本不等式的证明过程;会用基本不等式解决最值问题。
(2)能力目标:培养学生观察、试验、归纳、判断、猜想等思维能力。?
(3)情感目标:培养学生严谨求实的科学态度,体会数与形的和谐统一,领略数学的应用价值,激发学生的学习兴趣和勇于探索的精神。
3、教学重点、难点
根据课程标准制定如下的教学重点、难点
重点: 应用数形结合的思想理解不等式,并从不同角度探索基本不等式。
难点:基本不等式的内涵及几何意义的挖掘,用基本不等式求最值。
二、教法说明
本节课借助几何画板,使用多媒体辅助进行直观演示.采用启发式教学法创设问题情景,激发学生开始尝试活动.运用生活中的实际例子,让学生享受解决实际问题的乐趣. 课堂上主要采取对比分析;让学生边议、边评;组织学生学、思、练。通过师生和谐对话,使情感共鸣,让学生的潜能、创造性最大限度发挥,使认知效益最大。让学生爱学、乐学、会学、学会。
三、学法指导
为更好的贯彻课改精神,合理的对学生进行素质教育,在教学中,始终以学生主体,教师为主导.因此我在教学中让学生从不同角度去观察、分析,指导学生解决问题,感受知识的形成过程,培养学生数形结合的意识和能力,让学生学会学习。
四、教学设计
◆运用2002年国际数学家大会会标引入
◆运用分析法证明基本不等式
◆不等式的几何解释
◆基本不等式的应用
1、运用2002年国际数学家大会会标引入
如图,这是在北京召开的第24届国际数学家大会会标.会标根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。(展示风车)
正方形ABCD中,AE⊥BE,BF⊥CF,CG⊥DG,DH⊥AH,设AE=a,BE=b,则正方形的面积为S=__,Rt△ABE,Rt△BCF,Rt△CDG,Rt△ADH是全等三角形,它们的面积之和是S’=_
从图形中易得,s≥s’,即
问题1:它们有相等的情况吗?何时相等?
问题2:当 a,b为任意实数时,上式还成立吗?(学生积极思考,通过几何画板帮助学生理解)
一般地,对于任意实数a、b,我们有
当且仅当(重点强调)a=b时,等号成立(合情推理)
问题3:你能给出它的证明吗?(让学生独立证明)
设计意图
(1)运用2002年国际数学家大会会标引入,能让学生进一步体会中国数学的历史悠久,感受数学与生活的联系。
(2)运用此图标能较容易的观察出面积之间的关系,引入基本不等式很直观。
(3)三个思考题为学生创造情景,逐层深入,强化理解.
2、运用分析法证明基本不等式
如果 a>0,b>0 ,
用 和 分别代替a,b。可以得到
也可写成
(强调基本不等式成立的前提条件“正”)(演绎推理)
问题4:你能用不等式的性质直接推导吗?
要证 = 1 GB3 ①
只要证 = 2 GB3 ②
要证② ,只要证 = 3 GB3 ③
要证 = 3 GB3 ③ ,只要证 = 4 GB3 ④
显然, ④是成立的.当且仅当a=b时, 不等式中的等号成立.
(强调基本不等式取等的条件“等”)
设计意图
(1)证明过程课本上是以填空形式出现的,学生能够独立完成,这也能进一步培养学生的自学能力,符合课改精神;
(2)证明过程印证了不等式的正确性,并能加深学生对基本不等式的理解;
(3)此种证明方法是“分析法”,在选修教材的《推理与证明》一章中会重点讲解,此处有必要让学生初步了解。
3、不等式的几何解释
如图,AB是圆的直径,C是AB上任一点,AC=a,CB=b,过点C作垂直于AB的弦DE,连AD,BD,则CD= ,半径为
问题5: 你能用这个图得出基本不等式的几何解释吗? (学生积极思考,通过几何画板帮助学生理解)
设计意图
几何直观能启迪思路,帮助理解,因此,借助几何直观学习和理解数学,是数学学习中的重要方面。只有做到了直观上的理解,才是真正的理解。
4、基本不等式的应用
例1.证明
(学生自己证明)
设计意图
(1)这道例题很简单,多数学生都会仿照课本上的分析思路重新证明,能够练习“分析法”证明不等式的过程;
(2)学生能够加深对基本不等式的理解,a和b不仅仅是一个字母,而是一个符号,它们可以是a、b,也可以是x、y,也可以是一个多项式;
(3)此例不是课本例题,比课本例题简单,这样,循序渐进, 有利于学生理解不等式的内涵。
例2:(1)把36写成两个正数的积,当两个正数取什么值时,它们的和最小?
(2)把18写成两个正数的和,当两个正数取什么值时,它们的积最大?
(让学生分组合作、探究完成)
高中数学基本不等式教案设计三
课标要求
知识与技能:学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等;
过程与方法:通过实例探究抽象基本不等式;
情感目标:通过本节的学习,体会数学来源于生活,提高学习数学的兴趣; 识记 理解 应用 综合 知识点一:
基本不等式及其推导
过程 ∨ 知识点二:
基本不等式的应用 ∨ 目标设计 1.通过从不同角度探索不等式 的证明过程,使学生理解基本不等式及其等号成立的条件;
2.掌握基本不等式解决最值问题,并理解运用基本不等式 的三个限制条件(一正二定三相等)在解决最值中的作用。 教学情境一:
如图是在北京召开的第24界国际数学家大会的会标,
会标是根据中国古代数学家赵爽的弦图设计的,
颜色的明暗使它看上去象一个风车,代表中国人民热情好客。
问题1:你能在这个图案中找出一些相等关系或不等关系吗?
分析:将图中的“风车”抽象成如图,在正方形ABCD中有4个全等的直角三角形。设直角三角形的两条直角边长为a,b那么正方形的边长为 。
教师引导学生从面积的关系去找相等关系或不等关系。
我们考虑4个直角三角形的面积的和是 ,正方形的面积为 。
由图可知 ,即 .
当直角三角形变为等腰直角三角形,即a=b时,正方形EFGH缩为一个点,这时有 。
新知:若 ,则
教学情境二:
先将两张正方形纸片沿它们的对角线折成两个等腰直角三角形,
再用这两个三角形拼接构造出一个矩形
(两边分别等于两个直角三角形的直角边,多余部分折叠).
假设两个正方形的面积分别为 和 ( )
问题2:考察左图中两个直角三角形的面积与矩形的面积,你能发现一个不等式吗?
新知:若 ,则
问题3:你能用代数的方法给出它们的证明吗?
证明:因为 ,即 (当 时取等号)
(在该过程中,可发现 的取值可以是全体实数)
证明:(分析法):由于 ,于是要证明 ,
只要证明 ,
即证 ,即 ,
所以 ,(当 时取等号)
【板书】两个重要不等式
若 ,则 (当且仅当 时,等号成立)
若 ,则 (当且仅当 时,等号成立)
高中数学基本不等式教案设计相关 文章 :
1. 高中数学集合教案设计
2. 基本不等式教学反思【3篇】
3. 基本不等式教学反思
4. 高一数学教师教学计划
5. 高二数学必修3归纳总结
6. 高中数学老师教学案例反思
7. 高一数学的教学计划
8. 常用的高中数学教学方法是什么
9. 如何做好高二数学教学
10. 有哪些高中数学课堂的教育方法?
以上就是关于高中数学探究性教学设计相关问题的回答。希望能帮到你,如有更多相关问题,您也可以联系我们的客服进行咨询,客服也会为您讲解更多精彩的知识和内容。
推荐阅读: