fff线上vi设计(vi在线设计)
大家好!今天让创意岭的小编来大家介绍下关于fff线上vi设计的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。
开始之前先推荐一个非常厉害的Ai人工智能工具,一键生成原创文章、方案、文案、工作计划、工作报告、论文、代码、作文、做题和对话答疑等等,官网:https://ai.de1919.com
创意岭专注品牌设计、策划,为各大上市企业、个人提供一站式设计、策划服务,服务客户遍布全国,咨询相关业务请拨打电话:175-8598-2043,或添加微信:1454722008
本文目录:
急啊 哪位帮帮我
力MOS场效应晶体管 电力MOS场效应管通常主要指绝缘栅型中的MOS型(Metal Oxide Semiconductor FET),简称电力MOSFET(Power MOSFET)
结型电力场效应晶体管一般称作静电感应晶体管(Static Induction Transistor——SIT)。 是一种单极型的电压控制全控型器件。
特点——用栅极电压来控制漏极电流
输入阻抗高
驱动电路简单,需要的驱动功率小。
开关速度快,工作频率高。
热稳定性优于GTR。
电流容量小,耐压低,一般只适用于功率不超过10kW的电力电子装置 。
电力MOSFET的种类
按导电沟道可分为P沟道和N沟道。
耗尽型——当栅极电压为零时漏源极之间就存在导电沟道。
增强型——对于N(P)沟道器件,栅极电压大于(小于)零时才存在导电沟道。
电力MOSFET主要是N沟道增强型。
电力MOSFET的结构
小功率MOS管是横向导电器件。
电力MOSFET大都采用垂直导电结构,又称为VMOSFET(Vertical MOSFET)。
按垂直导电结构的差异,分为利用V型槽实现垂直导电的VVMOSFET和具有垂直导电双扩散MOS结构的VDMOSFET(Vertical Double-diffused MOSFET)。
这里主要以VDMOS器件为例进行讨论。
电力MOSFET的工作原理(N沟道增强型VDMOS)
截止:漏源极间加正电源,栅源极间电压为零。
P基区与N漂移区之间形成的PN结J1反偏,漏源极之间无电流流过。
导电:在栅源极间加正电压UGS
当UGS大于UT时,P型半导体反型成N型而成为反型层,该反型层形成N沟道而使PN结J1消失,漏极和源极导电 。
电力MOSFET的基本特性
(1)静态特性
漏极电流ID和栅源间电压UGS的关系称为MOSFET的转移特性。
ID较大时,ID与UGS的关系近似线性,曲线的斜率定义为跨导Gfs。
(2)MOSFET的漏极伏安特性(即输出特性):
截止区(对应于GTR的截止区)
饱和区(对应于GTR的放大区)
非饱和区(对应GTR的饱和区)
工作在开关状态,即在截止区和非饱和区之间来回转换。
漏源极之间有寄生二极管,漏源极间加反向电压时导通。
通态电阻具有正温度系数,对器件并联时的均流有利。
(3)动态特性
开通过程
开通延迟时间td(on)
上升时间tr
开通时间ton——开通延迟时间与上升时间之和
关断过程
关断延迟时间td(off)
下降时间tf
关断时间toff——关断延迟时间和下降时间之和
MOSFET的开关速度
MOSFET的开关速度和Cin充放电有很大关系。
可降低驱动电路内阻Rs减小时间常数,加快开关速度。
不存在少子储存效应,关断过程非常迅速。
开关时间在10~100ns之间,工作频率可达100kHz以上,是主要电力电子器件中最高的。
场控器件,静态时几乎不需输入电流。但在开关过程中需对输入电容充放电,仍需一定的驱动功率。
开关频率越高,所需要的驱动功率越大。
电力MOSFET的主要参数
除跨导Gfs、开启电压UT以及td(on)、tr、td(off)和tf之外还有:
(1)漏极电压UDS——电力MOSFET电压定额
(2)漏极直流电流ID和漏极脉冲电流幅值IDM——电力MOSFET电流定额
(3)栅源电压UGS—— UGS�8�6>20V将导致绝缘层击穿 。
(4)极间电容——极间电容CGS、CGD和CDS
另一种介绍说明:
场效应管(Fjeld Effect Transistor简称FET )是利用电场效应来控制半导体中电流的一种半导体器件,故因此而得名。场效应管是一种电压控制器件,只依靠一种载流子参与导电,故又称为单极型晶体管。与双极型晶体三极管相比,它具有输入阻抗高、噪声低、热稳定性好、抗辐射能力强、功耗小、制造工艺简单和便于集成化等优点。
场效应管有两大类,结型场效应管JFET和绝缘栅型场效应管IGFET,后者性能更为优越,发展迅速,应用广泛。图Z0121 为场效应管的类型及图形、符号。
一、结构与分类
图 Z0122为N沟道结型场效应管结构示意图和它的图形、符号。它是在同一块N型硅片的两侧分别制作掺杂浓度较高的P型区(用P 表示),形成两个对称的PN结,将两个P区的引出线连在一起作为一个电极,称为栅极(g),在N型硅片两端各引出一个电极,分别称为源极(s)和漏极(d)。在形成PN结过程中,由于P 区是重掺杂区,所以N一区侧的空间电荷层宽度远大
二、工作原理
N沟道和P沟道结型场效应管的工作原理完全相同,只是偏置电压的极性和载流子的类型不同而已。下面以N沟道结型场效应管为例来分析其工作原理。电路如图Z0123所示。由于栅源间加反向电压,所以两侧PN结均处于反向偏置,栅源电流几乎为零。漏源之间加正向电压使N型半导体中的多数载流子-电子由源极出发,经过沟道到达漏极形成漏极电流ID。
1.栅源电压UGS对导电沟道的影响(设UDS=0)
在图Z0123所示电路中,UGS <0,两个PN结处于反向偏置,耗尽层有一定宽度,ID=0。若|UGS| 增大,耗尽层变宽,沟道被压缩,截面积减小,沟道电阻增大;若|UGS| 减小,耗尽层变窄,沟道变宽,电阻减小。这表明UGS控制着漏源之间的导电沟道。当UGS负值增加到某一数值VP时,两边耗尽层合拢,整个沟道被耗尽层完全夹断。(VP称为夹断电压)此时,漏源之间的电阻趋于无穷大。管子处于截止状态,ID=0。
2.漏源电压UGS对漏极电流ID的影响(设UGS=0)
当UGS=0时,显然ID=0;当UDS>0且尚小对,P N结因加反向电压,使耗尽层具有一定宽度,但宽度上下不均匀,这是由于漏源之间的导电沟道具有一定电阻,因而漏源电压UDS沿沟道递降,造成漏端电位高于源端电位,使近漏端PN结上的反向偏压大于近源端,因而近漏端耗尽层宽度大于近源端。显然,在UDS较小时,沟道呈现一定电阻,ID随UDS成线性规律变化(如图Z0124曲线OA段);若UGS再继续增大,耗尽层也随之增宽,导电沟道相应变窄,尤其是近漏端更加明显。
由于沟道电阻的增大,ID增长变慢了(如图曲线AB段),当UDS增大到等于|VP|时,沟道在近漏端首先发生耗尽层相碰的现象。这种状态称为预夹断。这时管子并不截止,因为漏源两极间的场强已足够大,完全可以把向漏极漂移的全部电子吸引过去形成漏极饱和电流IDSS (这种情况如曲线B点):当UDS>|VP|再增加时,耗尽层从近漏端开始沿沟道加长它的接触部分,形成夹断区 。
由于耗尽层的电阻比沟道电阻大得多,所以比|VP|大的那部分电压基本上降在夹断区上,使夹断区形成很强的电场,它完全可以把沟道中向漏极漂移的电子拉向漏极,形成漏极电流。因为未被夹断的沟道上的电压基本保持不变,于是向漏极方向漂移的电子也基本保持不变,管子呈恒流特性(如曲线BC段)。但是,如果再增加UDS达到BUDS时(BUDS称为击穿电压)进入夹断区的电子将被强电场加速而获得很大的动能,这些电子和夹断区内的原子碰撞发生链锁反应,产生大量的新生载流予,使ID急剧增加而出现击穿现象(如曲线CD段)。
由此可见,结型场效应管的漏极电流ID受UGS和UDS的双重控制。这种电压的控制作用,是场效应管具有放大作用的基础。
三、特性曲线
1.输出特性曲线
输出特性曲线是栅源电压UGS取不同定值时,漏极电流ID 随漏源电压UDS 变化的一簇关系曲线,如图Z0124所示。由图可知,各条曲线有共同的变化规律。UGS越负,曲线越向下移动)这是因为对于相同的UDS,UGS越负,耗尽层越宽,导电沟道越窄,ID越小。
由图还可看出,输出特性可分为三个区域即可变电阻区、恒流区和击穿区。
◆可变电阻区:预夹断以前的区域。其特点是,当0<UDS<|VP|时,ID几乎与UDS呈线性关系增长,UGS愈负,曲线上升斜率愈小。在此区域内,场效应管等效为一个受UGS控制的可变电阻。
◆恒流区:图中两条虚线之间的部分。其特点是,当UDS>|VP|时,ID几乎不随UDS变化,保持某一恒定值。ID的大小只受UGS的控制,两者变量之间近乎成线性关系,所以该区域又称线性放大区。
◆击穿区:右侧虚线以右之区域。此区域内UDS>BUDS,管子被击穿,ID随UDS的增加而急剧增加。
2.转移特性曲线
当UDS一定时,ID与UGS之间的关系曲线称为转移特性曲线。实验表明,当UDS>|VP|后,即恒流区内,ID 受UDS影响甚小,所以转移特性通常只画一条。在工程计算中,与恒流区相对应的转移特性可以近似地用下式表示:Id=Idss(1-Ugs/Vp)(1-Ugs/Vp)
式GS0127中VP≤UGS≤0,IDSS是UGS=0时的漏极饱和电流。
labview 串口通信 vi程序有时候这样报错 怎么解决啊?
建议:1.在visa write 这个部分加个延时,有可能还没发送完成,就把VISA关闭了,
造成发送失败。
2.检查和单片机的连接,是否存在连接松动。
3.建议先给单片机通电,后才运行LabVIEW程序。
4.检查单片机受到干扰造成。
5.检查单片机的程序是否存在bug。
vis视觉识别系统是什么?
VI是整套CIS中MI(理念识别系统)、BI(行为识别系统)在直观视觉上的体现,是企业品牌形象进行传播的核心组成部分。随着近年来中国各行业市场竞争的激烈,VI已经成为各商家企业进行品牌宣传的有利武器。 补充: Vis是企业的视觉识别系统,包括基本要素(企业名称、企业标志、标准字、标准色、企业造型等)和应用要素(产品造型、办公用品、服装、招牌、交通工具等),通过具体符号的视觉传达设计,直接进入人脑,留下对企业的视觉影象。 补充: 企业主一般对VI的理解比较笼统,一般只是单纯的理解为标志设计,而不知道VI中更重要的是以文化理念做后盾,再通过设计加工使其转化为外在的视觉形象。其实VI就是解决商家或者企业穿衣服的问题。你为何能认出你身边的朋友?因为他们长的不一样穿的也不一样,企业要想与众不同必须有它自己的特点。你穿什么样的衣服才能穿出自己的个性?VI就是解决这样的问题。 补充: 所以说,如果单纯说VI就是标志设计,就是装修设计,就是选个固定颜色做为企业标准色那就是大错特错了。�0�2�0�2�0�2�0�2�0�2�0�2 商家天天在说做品牌,创造品牌价值,确实不了解VI才是创建品牌之基础要素,带有计划性和目的性通过各媒介整合统一推广VI,才是从真正意义上塑造企业品牌。 补充: VI视觉识别系统将企业精神和文化转化为视觉符号形式传达给受众,通过最具感染力的艺术形式宣传企业和帮助企业塑造品牌。以往的企业文化宣传只是单纯的通过文字标语去体现,缺乏理念、枯燥乏味、缺少变化,过去的企业宣传手段在当今多变的商业市场中已经远远不够了。(不好意思,手机一下子打不了太多字,只能分几步回答。简述在网页设计中如何将色彩数字化?
所谓数字化是什么意思? 意识是用色号RGB来表示? 如#FFF的16进制还是所谓的设计标准设计标准可以使用色卡的方式,做出网页是使用规范来进行后面的页面交接。
我们要做的第一步是颜色选择,在网站刚开始要设计的时候,这一点就要着手去做了,在这里要注意的是颜色的选择并不是凭空想象的,而是要根据服务产品的定位、风格、还有要传达给用户的理念,将这几点考虑到,在进行选取,而不是根据自己的经验或者嗜好来。
我们来举个例子,假如说为一家大型企业设计官网,这家企业的要求是 VI 风格,采用统一配色,那么这家企业官网的配色我们就应该选取 VI 的风格配色。
选色的方法:(1)工具流:这个链接包含大量选色工具12个适合设计师的在线色彩搭配工具
2)参考流:寻找别人的网站作为参考选取颜色(但是注意要风格类似,比如你的客户要求高雅风格,你就去找类似风格的网站选色),这个方法适用于初学者。
以上就是关于fff线上vi设计相关问题的回答。希望能帮到你,如有更多相关问题,您也可以联系我们的客服进行咨询,客服也会为您讲解更多精彩的知识和内容。
推荐阅读:
英国研究生申请多久出offer(英国申请研究生一般多久出offer)
湖州专业的景观设计性价比(湖州专业的景观设计性价比高的学校)