HOME 首页
SERVICE 服务产品
XINMEITI 新媒体代运营
CASE 服务案例
NEWS 热点资讯
ABOUT 关于我们
CONTACT 联系我们
创意岭
让品牌有温度、有情感
专注品牌策划15年

    人工智能与仿生机器人的资料(人工智能与仿生机器人的资料有哪些)

    发布时间:2023-04-24 05:46:31     稿源: 创意岭    阅读: 53        

    大家好!今天让创意岭的小编来大家介绍下关于人工智能与仿生机器人的资料的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。

    开始之前先推荐一个非常厉害的Ai人工智能工具,一键生成原创文章、方案、文案、工作计划、工作报告、论文、代码、作文、做题和对话答疑等等

    只需要输入关键词,就能返回你想要的内容,有小程序、在线网页版、PC客户端和批量生成器

    官网:https://ai.de1919.com

    本文目录:

    人工智能与仿生机器人的资料(人工智能与仿生机器人的资料有哪些)

    关于仿生学的资料要简短和简单

    仿生学(bionics)在具有生命之意的希腊语bion上,加上有工程技术涵义的ics而组成的词。大约从1960年才开始使用。生物具有的功能迄今比任何人工制造的机械都优越得多,仿生学就是要在工程上实现并有效地应用生物功能的一门学科。例如关于信息接受(感觉功能)、信息传递(神经功能)、自动控制系统等,这种生物体的结构与功能在机械设计方面给了很大启发。可举出的仿生学例子,如将海豚的体形或皮肤结构(游泳时能使身体表面不产生紊流)应用到潜艇设计原理上。仿生学也被认为是与控制论有密切关系的一门学科,而控制论主要是将生命现象和机械原理加以比较,进行研究和解释的一门学科。
    苍蝇,是细菌的传播者,谁都讨厌它。可是苍蝇的楫翅(又叫平衡棒)是“天然导航仪”,人们模仿它制成了“振动陀螺仪”。这种仪器目前已经应用在火箭和高速飞机上,实现了自动驾驶。苍蝇的眼睛是一种“复眼”,由30O0多只小眼组成,人们模仿它制成了“蝇眼透镜”。“蝇眼透镜”是用几百或者几千块小透镜整齐排列组合而成的,用它作镜头可以制成“蝇眼照相机”,一次就能照出千百张相同的相片。这种照相机已经用于印刷制版和大量复制电子计算机的微小电路,大大提高了工效和质量。“蝇眼透镜”是一种新型光学元件,它的用途很多。
    自然界形形**的生物,都有着怎样的奇异本领?它们的种种本领,给了人类哪些启发?模仿这些本领,人类又可以造出什么样的机器?这里要介绍的一门新兴科学——仿生学。
    仿生学是指模仿生物建造技术装置的科学,它是在本世纪中期才出现的一门新的边缘科学。仿生学研究生物体的结构、功能和工作原理,并将这些原理移植于工程技术之中,发明性能优越的仪器、装置和机器,创造新技术。从仿生学的诞生、发展,到现在短短几十年的时间内,它的研究成果已经非常可观。仿生学的问世开辟了独特的技术发展道路,也就是向生物界索取蓝图的道路,它大大开阔了人们的眼界,显示了极强的生命力。
    【仿生学的诞生】
    随着生产的需要和科学技术的发展,从20世纪50年代以来,人们已经认识到生物系统是开辟新技术的主要途径之一,自觉地把生物界作为各种技术思想、设计原理和创造发明的源泉。人们用化学、物理学、数学以及技术模型对生物系统开展着深入的研究,促进了生物学的极大发展,对生物体内功能机理的研究也取得了迅速的进展。此时模拟生物不再是引人入胜的幻想,而成了可以做到的事实。生物学家和工程师们积极合作,开始将从生物界获得的知识用来改善旧的或创造新的工程技术设备。生物学开始跨入各行各业技术革新和技术革命的行列,而且首先在自动控制、航空、航海等军事部门取得了成功。于是生物学和工程技术学科结合在一起,互相渗透孕育出一门新生的科学——仿生学。
    作为一门独立的学科,仿生学正式诞生于1960年9月。由美国空军航空局在俄亥俄州的空军基地戴通召开了第一次仿生学会议。会议讨论的中心议题是“分析生物系统所得到的概念能够用到人工制造的信息加工系统的设计上去吗?”斯梯尔为新兴的科学命名为“Bionics”,希腊文的意思代表着研究生命系统功能的科学,1963年我国将“Bionics”译为“仿生学”。斯梯尔把仿生学定义为“模仿生物原理来建造技术系统,或者使人造技术系统具有或类似于生物特征的科学”。简言之,仿生学就是模仿生物的科学。确切地说,仿生学是研究生物系统的结构、特质、功能、能量转换、信息控制等各种优异的特征,并把它们应用到技术系统,改善已有的技术工程设备,并创造出新的工艺过程、建筑构型、自动化装置等技术系统的综合性科学。从生物学的角度来说,仿生学属于“应用生物学”的一个分支;从工程技术方面来看,仿生学根据对生物系统的研究,为设计和建造新的技术设备提供了新原理、新方法和新途径。仿生学的光荣使命就是为人类提供最可靠、最灵活、最高效、最经济的接近于生物系统的技术系统,为人类造福。
    【仿生学的研究方法与内容】
    仿生学是生物学、数学和工程技术学相互渗透而结合成的一门新兴的边缘科学。第一届仿生学会议为仿生学确定了一个有趣而形象的标志:一个巨大的积分符号,把解剖刀和电烙铁“积分”在一起。这个符号的含义不仅显示出仿生学的组成,而且也概括表达了仿生学的研究途径。
    仿生学的任务就是要研究生物系统的优异能力及产生的原理,并把它模式化,然后应用这些原理去设计和制造新的技术设备。
    仿生学的主要研究方法就是提出模型,进行模拟。其研究程序大致有以下三个阶段:
    首先是对生物原型的研究。根据生产实际提出的具体课题,将研究所得的生物资料予以简化,吸收对技术要求有益的内容,取消与生产技术要求无关的因素,得到一个生物模型;第二阶段是将生物模型提供的资料进行数学分析,并使其内在的联系抽象化,用数学的语言把生物模型“翻译”成具有一定意义的数学模型;最后数学模型制造出可在工程技术上进行实验的实物模型。当然在生物的模拟过程中,不仅仅是简单的仿生,更重要的是在仿生中有创新。经过实践——认识——再实践的多次重复,才能使模拟出来的东西越来越符合生产的需要。这样模拟的结果,使最终建成的机器设备将与生物原型不同,在某些方面甚上超过生物原型的能力。例如今天的飞机在许多方面都超过了鸟类的飞行能力,电子计算机在复杂的计算中要比人的计算能力迅速而可靠。
    仿生学的基本研究方法使它在生物学的研究中表现出一个突出的特点,就是整体性。从仿生学的整体来看,它把生物看成是一个能与内外环境进行联系和控制的复杂系统。它的任务就是研究复杂系统内各部分之间的相互关系以及整个系统的行为和状态。生物最基本的特征就是生物的自我更新和自我复制,它们与外界的联系是密不可分的。生物从环境中获得物质和能量,才能进行生长和繁殖;生物从环境中接受信息,不断地调整和综合,才能适应和进化。长期的进化过程使生物获得结构和功能的统一,局部与整体的协调与统一。仿生学要研究生物体与外界刺激(输入信息)之间的定量关系,即着重于数量关系的统一性,才能进行模拟。为达到此目的,采用任何局部的方法都不能获得满意的效果。因此,仿生学的研究方法必须着重于整体。
    仿生学的研究内容是极其丰富多彩的,因为生物界本身就包含着成千上万的种类,它们具有各种优异的结构和功能供各行业来研究。自从仿生学问世以来的二十几年内,仿生学的研究得到迅速的发展,且取得了很大的成果。就其研究范围可包括电子仿生、机械仿生、建筑仿生、化学仿生等。随着现代工程技术的发展,学科分支繁多,在仿生学中相应地开展对口的技术仿生研究。例如:航海部门对水生动物运动的流体力学的研究;航空部门对鸟类、昆虫飞行的模拟、动物的定位与导航;工程建筑对生物力学的模拟;无线电技术部门对于人神经细胞、感觉器宫和神经网络的模拟;计算机技术对于脑的模拟似及人工智能的研究等。在第一届仿生学会议上发表的比较典型的课题有:“人造神经元有什么特点”、“设计生物计算机中的问题”、“用机器识别图像”、“学习的机器”等。从中可以看出以电子仿生的研究比较广泛。仿生学的研究课题多集中在以下三种生物原型的研究,即动物的感觉器官、神经元、神经系统的整体作用。以后在机械仿生和化学仿生方面的研究也随之开展起来,近些年又出现新的分支,如人体的仿生学、分子仿生学和宇宙仿生学等。
    总之,仿生学的研究内容,从模拟微观世界的分子仿生学到宏观的宇宙仿生学包括了更为广泛的内容。而当今的科学技术正是处于一个各种自然科学高度综合和互相交叉、渗透的新时代,仿生学通过模拟的方法把对生命的研究和实践结合起来,同时对生物学的发展也起了极大的促进作用。在其它学科的渗透和影响下,使生物科学的研究在方法上发生了根本的转变;在内容上也从描述和分析的水平向着精确和定量的方向深化。生物科学的发展又是以仿生学为渠道向各种自然科学和技术科学输送宝贵的资料和丰富的营养,加速科学的发展。闪此,仿生学的科研显示出无穷的生命力,它的发展和成就将为促进世界整体科学技术的发展做出巨大的贡献。
    【仿生学的研究范围】
    仿生学的研究范围主要包括:力学仿生、分子仿生、能量仿生、信息与控制仿生等。
    ◇力学仿生,是研究并模仿生物体大体结构与精细结构的静力学性质,以及生物体各组成部分在体内相对运动和生物体在环境中运动的动力学性质。例如,建筑上模仿贝壳修造的大跨度薄壳建筑,模仿股骨结构建造的立柱,既消除应力特别集中的区域,又可用最少的建材承受最大的载荷。军事上模仿海豚皮肤的沟槽结构,把人工海豚皮包敷在船舰外壳上,可减少航行揣流,提高航速;
    ◇分子仿生,是研究与模拟生物体中酶的催化作用、生物膜的选择性、通透性、生物大分子或其类似物的分析和合成等。例如,在搞清森林害虫舞毒蛾性引诱激素的化学结构后,合成了一种类似有机化合物,在田间捕虫笼中用千万分之一微克,便可诱杀雄虫;
    ◇能量仿生,是研究与模仿生物电器官生物发光、肌肉直接把化学能转换成机械能等生物体中的能量转换过程;
    ◇信息与控制仿生,是研究与模拟感觉器官、神经元与神经网络、以及高级中枢的智能活动等方面生物体中的信息处理过程。例如,根据象鼻虫视动反应制成的“自相关测速仪”可测定飞机着陆速度。根据鲎复眼视网膜侧抑制网络的工作原理,研制成功可增强图像轮廓、提高反差、从而有助于模糊目标检测的—些装置。已建立的神经元模型达100种以上,并在此基础上构造出新型计算机。
    模仿人类学习过程,制造出一种称为“感知机”的机器,它可以通过训练,改变元件之间联系的权重来进行学习,从而能实现模式识别。此外,它还研究与模拟体内稳态,运动控制、动物的定向与导航等生物系统中的控制机制,以及人-机系统的仿生学方面。
    某些文献中,把分子仿生与能量仿生的部分内容称为化学仿生,而把信息和控制仿生的部分内容称为神经仿生。
    仿生学的范围很广,信息与控制仿生是一个主要领域。一方面由于自动化向智能控制发展的需要,另一方面是由于生物科学已发展到这样一个阶段,使研究大脑已成为对神经科学最大的挑战。人工智能和智能机器人研究的仿生学方面——生物模式识别的研究,大脑学习记忆和思维过程的研究与模拟,生物体中控制的可靠性和协调问题等——是仿生学研究的主攻方面。
    控制与信息仿生和生物控制论关系密切。两者都研究生物系统中的控制和信息过程,都运用生物系统的模型。但前者的目的主要是构造实用人造硬件系统;而生物控制论则从控制论的一般原理,从技术科学的理论出发,为生物行为寻求解释。
    最广泛地运用类比、模拟和模型方法是仿生学研究方法的突出特点。其目的不在于直接复制每一个细节,而是要理解生物系统的工作原理,以实现特定功能为中心目的。—般认为,在仿生学研究中存在下列三个相关的方面:生物原型、数学模型和硬件模型。前者是基础,后者是目的,而数学模型则是两者之间必不可少的桥梁。
    由于生物系统的复杂性,搞清某种生物系统的机制需要相当长的研究周期,而且解决实际问题需要多学科长时间的密切协作,这是限制仿生学发展速度的主要原因。
    【仿生学的现象】
    苍蝇与宇宙飞船
    令人讨厌的苍蝇,与宏伟的航天事业似乎风马牛不相及,但仿生学却把它们紧密地联系起来了。
    苍蝇是声名狼藉的“逐臭之夫”,凡是腥臭污秽的地方,都有它们的踪迹。苍蝇的嗅觉特别灵敏,远在几千米外的气味也能嗅到。但是苍蝇并没有“鼻子”,它靠什么来充当嗅觉的呢? 原来,苍蝇的“鼻子”——嗅觉感受器分布在头部的一对触角上。
    每个“鼻子”只有一个“鼻孔”与外界相通,内含上百个嗅觉神经细胞。若有气味进入“鼻孔”,这些神经立即把气味刺激转变成神经电脉冲,送往大脑。大脑根据不同气味物质所产生的神经电脉冲的不同,就可区别出不同气味的物质。因此,苍蝇的触角像是一台灵敏的气体分析仪。
    仿生学家由此得到启发,根据苍蝇嗅觉器的结构和功能,仿制成一种十分奇特的小型气体分析仪。这种仪器的“探头”不是金属,而是活的苍蝇。就是把非常纤细的微电极插到苍蝇的嗅觉神经上,将引导出来的神经电信号经电子线路放大后,送给分析器;分析器一经发现气味物质的信号,便能发出警报。这种仪器已经被安装在宇宙飞船的座舱里,用来检测舱内气体的成分。
    这种小型气体分析仪,也可测量潜水艇和矿井里的有害气体。利用这种原理,还可用来改进计算机的输入装置和有关气体色层分析仪的结构原理中。
    从萤火虫到人工冷光
    自从人类发明了电灯,生活变得方便、丰富多了。但电灯只能将电能的很少一部分转变成可见光,其余大部分都以热能的形式浪费掉了,而且电灯的热射线有害于人眼。那么,有没有只发光不发热的光源呢? 人类又把目光投向了大自然。
    在自然界中,有许多生物都能发光,如细菌、真菌、蠕虫、软体动物、甲壳动物、昆虫和鱼类等,而且这些动物发出的光都不产生热,所以又被称为“冷光”。
    在众多的发光动物中,萤火虫是其中的一类。萤火虫约有1 500种,它们发出的冷光的颜色有黄绿色、橙色,光的亮度也各不相同。萤火虫发出冷光不仅具有很高的发光效率,而且发出的冷光一般都很柔和,很适合人类的眼睛,光的强度也比较高。因此,生物光是一种人类理想的光。
    科学家研究发现,萤火虫的发光器位于腹部。这个发光器由发光层、透明层和反射层三部分组成。发光层拥有几千个发光细胞,它们都含有荧光素和荧光酶两种物质。在荧光酶的作用下,荧光素在细胞内水分的参与下,与氧化合便发出荧光。萤火虫的发光,实质上是把化学能转变成光能的过程。
    早在40年代,人们根据对萤火虫的研究,创造了日光灯,使人类的照明光源发生了很大变化。近年来,科学家先是从萤火虫的发光器中分离出了纯荧光素,后来又分离出了荧光酶,接着,又用化学方法人工合成了荧光素。由荧光素、荧光酶、ATP(三磷酸腺苷)和水混合而成的生物光源,可在充满爆炸性瓦斯的矿井中当闪光灯。由于这种光没有电源,不会产生磁场,因而可以在生物光源的照明下,做清除磁性水雷等工作。
    现在,人们已能用掺和某些化学物质的方法得到类似生物光的冷光,作为安全照明用。

    人形机器人近十年资料

    关于类人机器人的研究是从20世纪50年代开始,苏联的Bernsteinl5 从生物动力学的角度对人类和动物的步行机理进行深入的研究,并就步行运动作了非常形象化的描述.1960年,苏联学者顿斯科依 发表了著作“运动生物学”,从生物力学的角度,对人体运动学、动力学、能量特征和力学特征进行一个详细的描述.各国学者对两足步行机器人从理论和实践上进行了较长时间的研究工作.最早在1968年,英国的Mosher.R试制了一台名为“Rig”的操纵型两足步行机器人,它只有踝和髋两个关节,操纵者靠力反馈感觉来保持机器平衡,这种主从式的机械装置可算是两足步行机构的雏形。
    作为机器人产品最早的实用机型(示教再现)是1962 年美国A M F公司推出的“VERSTRAN 和UNlMATlON公司推出的“UNlMATE 。这些工业机器人的控制方式与数控机床大致相似, 但外形特征迥异,主要由类似人的手和臂组成。1965年,MlT的Roborts演示了第一个具有视觉传感器的、能识别与定位简单积木的机器人系统。1967年,日本成立了人工手研究会(现改名为仿生机构研究会),同年召开了日本首届机器人学术会议。
    1970年,在美国召开了第一届国际工业机器人学术会议。1970年以后,机器人的研究得到迅速广泛的普及。7O年代末, 美国推出Puma系列高功能机器人, 采用了当时最先进的l8位多CPU二级微机控制系统, 有5种灵活示教方式和专用VAL语言, 可进行轨迹控制和相当复杂的动作。1973年,辛辛那提•米拉克隆公司的理查德•豪恩制造了第一台由小型计算机控制的工业机器人。它是液压驱动的,能提升的有效负载达45公斤。
    到了1980年,工业机器人在日本普及, 故日本称该年为“机器人元年”。随后,工业机器人在日本得到了巨大发展, 日本也因此而赢得了“机器人王国” 的美称。随着计算机技术和人工智能技术的飞速发展, 使机器人在功能和技术层次上有了很大的提高, 移动机器人和机器人的视觉和触觉等技术就是典型的代表。由于这些技术的发展, 推动了机器人概念的延伸。20世纪80年代,将具有感觉、思考、决策和动作能力的系统称为智能机器人,这是一个概括的、含义广泛的概念。这一概念不但指导了机器人技术的研究和应用, 而且又赋予了机器人技术向深广发展的巨大空间,水下机器人、空间机器人、空中机器人、地面机器人、微小型机器人等各种用途的机器人相继问世,许多梦想成为了现实。
    类人机器人也在20世纪80-90年代得到迅速发展,其中真正的两足步行机器人是I.Kato在1971年试制的Wap3,它最大步幅15mm,周期45秒,Wap3的研制成功,揭开了两足机器人的研究序幕。1980年,加藤实验室又推出WL-9DR两足机器人,WL-9DR实现了步幅45cm,每步9秒的准动态步行.1984年,加藤在以前的研究基础上采用了踝关节力矩控制,使wL一10RD嘲实现了平稳的动态步行(每步周期1.5秒,步长40cm),该机器人每条腿自由度为:踝关节两个,膝关节一个,髋关节三个。1986年,加藤又推出r wL—l2R,该机构具有8个自由度:每条腿有三个前向关节;躯体有前向和侧向两个关节。此后经多年的研究,两足机器人研究已在许多地方进行,在所有的研究当中,日本人作出的成果最多。
    1971年至1986年间,牛津大学的Witt L7 等人曾制造和完善了一个两足步行机器人,在平地上走得非常好,步速达0.23m/s。日本的J.FurushoL9 研制r两个系列的能够动态步行的两足步行机构,从1981年开始先后研制了Kenkyaku一1,Kenkyaku-2,BLR—G2和BLR-G2机器人,Kenkyaku-l具有四个前向关节的五连杆平面型步行机,每条腿的髋部和膝部各有一个关节在假设无双腿支撑期的前提下,由脚底触觉信号触发两单脚支撑期的切换,在实验中实现 周期0.45秒,速度0.8m/s的前向稳定动态步行;Kenkyaku一2在Kenkyaku-1基础上,增加两个踝关节,在无踝关节输人力矩的情况下,巧妙地利用重力,实现了周期为0.7一1.0秒,步长35-45cm 的动态步行;BLR—G2是三维空间运动型两足步行机构。
    1982年东京理工学院的Funabashi L7 等设计了一个名为MEG一2的两足步行机器人,该机器人安装有重力和惯性力补偿装置,在1985年的实验中,该机器人实现 高速步行(125步/分钟)。在美国的两足步行机器人研究者中美籍华人郑元芳博士是一个非常杰出的人物,他研制了两台步行机器人[I “],分别命名为SD—l和SD一2,SD—l具有四个自由度,SD一2具有八个自由度,SD一2是美国第一台真正类人的两足步行机器人。1986年,SD一2机器人成功地实现了平地上的前进、后退以及左、右侧行。1987年,这个机器人又成功地实现了动态步行。1990年,他首次提出了使两足机器人能够走斜坡的控制方案,并利用SD一2进行了成功的实验.
    Kajita 是日本另一个著名的步行机器人研究者,主攻动态步行的控制方法,1990年,他研制成功一台五连杆平面型两足步行机器人,具有四个前向驱动电机,均安装在机器人躯体上,通过平行四边形连杆传动机构驱动小腿的运动,踝关节完全自由,他提出了整个机构的轨道能量守恒概念,实现了在不平地面上的稳定动态步行。
    1989年,加拿大的Tad.McGeer建立了平面型的两足步行机构,两腿为直杆机构,没有膝关节,每条腿上各有一个小电机,控制腿的伸缩.无任何主动控制和能量供给,具有简单二级针摆特征,放在斜坡上,可依靠重力,实现动态步行。
    我国国防科技大学1988年春研制成功我国第一台平面型六自由度的两足机器人,能实现前进、后退和上下楼梯,1989年,他们又实现了准动步态步行,1990年,又实现了实验室环境中的全方位行走,1995年,实现了动态步行.1989年哈尔滨工业大学研制出一台能静态步行的两足机器人。
    1984年 英格伯格再推机器人Helpmate,这种机器人能在医院里为病人送饭、送药、送邮件。同年,他还预言:“我要让机器人擦地板,做饭,出去帮我洗车,检查安全”。
    1998年 丹麦乐高公司推出机器人(Mind-storms)套件,让机器人制造变得跟搭积木一样,相对简单又能任意拼装,使机器人开始走入个人世界。
    1999年 日本索尼公司推出犬型机器人爱宝(AIBO),当即销售一空,从此娱乐机器人成为目前机器人迈进普通家庭的途径之一。
    日本本田公司从1986 年至今已经推出了P 系列1,2,3 型机器人。本田的研究工作, 尤其是“P3”和“ASIMO ”的推出, 将仿人机器人的研制工作推上了一个新的台阶, 使仿人机器人的研制和生产正式走向实用化、工程化和市场化。P1是本田公司最初行走机器人, 主要是对双足步行机器人进行基础性的研究工作; P2 型机器人是1996 年12 月推出的, 相对于P1 而言, 更加拟人化。P2的问世将双足步行机器人的研究工作推向了高潮, 使本田公司在此领域处于世界绝对的领先的地位。甚至MIT 的G. A. Partt 教授曾一度认为今后在双足步行机器人领域已经没有什么工作可以再做了。
    1997 年12 月本田公司又推出了P3 型双足步行机器人, 基本上与P2 型相似, 只是在重量和高度上有所降低( 由原来的210kg 降为130kg , 高度由1800mm 降为1600mm ) , 且使用了新型的镁材料。 本田公司于2000 年11 月20 日又推出了新型双脚步行机器人“ASIMO (Advanced Step in Inno2vative Mobility ) ”,“ASIMO ”与“P3”相比, 实现了小型轻量化, 使其更容易适应人类的生活空间, 通过提高双脚步行技术使其更接近人类的步行方式。“ASIMO ”高120cm, 体重43kg , 使用个人电脑或便携式控制器操作步行方向和关节及手的动作。双脚步行方面, 采用了新开发的技术“I2WALK ( IntelligentRealtime Flexible Walking ) ”, 可以更加自由的步行. I2WALK 是在过去的双脚步行技术的基础上组合了新的“预测运动控制”功能.。它可以实时预测以后的动作, 并且据此事先移动重心来改变步调。 过去由于不能进行预测运动控制, 因此当从直行改为转弯时, 必须先停止直行动作后才可以转弯。而“ASIMO ”通过事先预测“下面转弯以后重心向外侧倾斜多少”等重心变化, 可以使得从直行改为转弯时的步行动作变得连续流畅。日本本田公司研制仿人机器人的目标是达到与人无异的动态步行。
    日本索尼公司于2000 年11 月21 日推出了人型娱乐型机器人“Sony Dream Robot 23X" (SDR23X) ,其身高50cm, 重量为5kg. 其特征是每分钟可以步行15m , 并可按照音乐节拍翩翩起舞, 可以进行较高速度的自律运动。另外还配备声音识别和图像识别功能。在记者招待会上, SDR23X 在众多记者的面前表演了“边做体操边快速行走”、“按照音乐节拍的舞蹈”、“按照命令把指定的球踢进球门”等项目。SDR23X 可以挥手、转身, 还可以同时进行双脚步行。SDR23X 分别在头部安装了2 个、躯干部安装了2 个、每个手臂安装了4 个、每个下肢和足部安装了6 个、共计24 个配置了驱动机构的“关节”, 这些关节通过2 个64bit RISC 微处理器进行实时控制.。实时操作系统为索尼独自开发的“Aperios ". SDR23X 的动作有以下7 种,1) 最高速度为15m/分的前进后退左右横行;2) 在前进过程中左右转身(异步转90) ;3)由伏卧仰卧状态起立; 4)单腿站立(在斜面上也可做此动作) ;5)在凸凹不平的路面上行走;6)踢球; 7)舞蹈。另外, SDR23X 还可以识别20 种声音, 并且可以讲由声音合成的20 种语言, 同时对颜色也可以识别。
    2001年,美国麻省理工学院打破历史传统,研发了世界上第一个有人类感情的机器人Kismet。而代表机器人最高技术的类人机器人是高级整合控制论、机械电子、计算机与人工智能、材料学和仿生学的产物,目前科学界正在向此方向研究开发。

    2002年 丹麦iRobot公司推出了吸尘器机器人Roomba,它能避开障碍,自动设计行进路线,还能在电量不足时,自动驶向充电座。Roomba是目前世界上销量最大、最商业化的家用机器人。
    2004年3月26日,索尼、富士通和三菱重工联合成立了旨在统一家用机器人操作标准的组织“机器人服务计划(RSi)”,该组织将负责统一目前各公司分别制订的机器人操作命令体系。目的是促进机器人操作家用AV设备、机器人利用互联网检索并收集信息等服务的开发。他们计划在2004年底出台规格草案,除了开发机器人的各公司之外,还呼吁电机厂商、互联网内容提供商等积极参加。此外,包括本田、丰田在内的日本企业也纷纷发布了各自的智能机器人产品,其中本田公司在2000年发布的Asimo被称为是全球首款双足行走的机器人。
    2005年9月,日本三菱重工正式推出该公司制造的智能家用机器人“若丸”。它身高1米、体重30公斤,懂得英语、日语等4种语言,能记得单词1万个。它还可以识别10个人的面孔,并能叫出他们的名字。
    2005年10月4日,在日本首都东京郊区幕张,日本村田制作所开发的新型骑车机器人与大众见面。这款会骑自行车的新型机器人不仅能骑车前行,发现障碍物时还可停车或后退。

    2006年 6月,微软公司推出Microsoft Robotics Studio,机器人模块化、平台统一化的趋势越来越明显,比尔•盖茨预言,家用机器人很快将席卷全球。
    2008年,韩国科学家研制出“人型机器人”,会跳舞、做家务、还会表达情绪。研究人员将这款人型机器人取名为“马鲁”,马鲁身高1.5米,可以模仿人类张开闭合嘴唇、挤眉弄眼、上肢和下肢自如活动、会自动停止行走。

    机器人的资料

    机器人(Robot)是自动执行工作的机器装置。它既可以接受人类指挥,又可以运行预先编排的程序,也可以根据以人工智能技术制定的原则纲领行动。它的任务是协助或取代人类工作的工作,例如生产业、建筑业,或是危险的工作。

    它是高级整合控制论、机械电子、计算机、材料和仿生学的产物。在工业、医学、农业、建筑业甚至军事等领域中均有重要用途。

    国际上对机器人的概念已经逐渐趋近一致,机器人是靠自身动力和控制能力来实现各种功能的一种机器,它能为人类带来许多方便之处。

    扩展资料:

    控制系统

    一种是集中式控制,即机器人的全部控制由一台微型计算机完成。另一种是分散(级)式控制,即采用多台微机来分担机器人的控制如当采用上;

    下两级微机共同完成机器人的控制时,主机常用于负责系统的管理、通讯、运动学和动力学计算,并向下级微机发送指令信息;

    作为下级从机,各关节分别对应一个CPU,进行插补运算和伺服控制处理,实现给定的运动,并向主机反馈信息。根据作业任务要求的不同,机器人的控制方式又可分为点位控制、连续轨迹控制和力(力矩)控制。

    人工智能与仿生机器人的资料(人工智能与仿生机器人的资料有哪些)

    人工智能和仿生人的区别

    人工智能和仿生人的区别如下:
    1、仿生人是人工智能的一种,仿生人是一种旨在模仿人类外观和行为的机器人,尤其特指具有和人类相似肌体的种类。
    2、人工智能是研究开发用于模拟,延伸和扩展人的智能的理论,方法,技术及应用系统的一门新的技术科学。

    以上就是关于人工智能与仿生机器人的资料相关问题的回答。希望能帮到你,如有更多相关问题,您也可以联系我们的客服进行咨询,客服也会为您讲解更多精彩的知识和内容。


    推荐阅读:

    抖音解除封禁电话(抖音人工客服会帮忙解封)

    AI人工智能公司(中国ai人工智能公司)

    注册一个工作室多少钱(注册个人工作室流程及费用)

    杭州技能补贴去哪个窗口(杭州技能补贴去哪个窗口办理)

    豆瓣言情排行榜前十名(豆瓣言情排行榜前十名)