ChatGPT新题材龙头(ChatGPT新题材龙头)
大家好!今天让创意岭的小编来大家介绍下关于ChatGPT新题材龙头的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。
开始之前先推荐一个非常厉害的Ai人工智能工具,一键生成原创文章、方案、文案、工作计划、工作报告、论文、代码、作文、做题和对话答疑等等
只需要输入关键词,就能返回你想要的内容,有小程序、在线网页版、PC客户端和批量生成器
本文目录:
chatjpt是什么
chatjpt是什么
ChatGPT是美国人工智能研究实验室OpenAI新推出的一种人工智能技术驱动的自然语言处理工具,使用了Transformer神经网络架构,也是GPT-3.5架构,这是一种用于处理序列数据的模型,拥有语言理解和文本生成能力,尤其是它会通过连接大量的语料库来训练模型。
这些语料库包含了真实世界中的对话,使得ChatGPT具备上知天文下知地理,还能根据聊天的上下文进行互动的能力,做到与真正人类几乎无异的聊天场景进行交流。
ChatGPT不单是聊天机器人,还能进行撰写邮件、视频脚本、文案、翻译、代码等任务。
在OpenAI的官网上,ChatGPT被描述为优化对话的语言模型,是GPT-3.5架构的主力模型。
ChatGPT具有同类产品具备的一些特性,例如对话能力,能够在同一个会话期间内回答上下文相关的后续问题。然而,其在短时间内引爆全球的原因在于,在网友们晒出的截图中,ChatGPT不仅能流畅地与用户对话,甚至能写诗、撰文、编码。
ChatGPT还采用了注重道德水平的训练方式,按照预先设计的道德准则,对不怀好意的提问和请求“说不”。一旦发现用户给出的文字提示里面含有恶意,包括但不限于暴力、歧视、犯罪等意图,都会拒绝提供有效答案。
DriveGPT雪湖·海若诞生,将重塑汽车智能化技术路线
和 ChatGPT 在 AIGC(AI- Generated Content,人工智能生成内容)领域一样具备颠覆*的*情正在发生。
4 月 11 日,自动驾驶技术公司毫末智行在其第八届 HAOMO AI DAY 上,重磅发布行业首个自动驾驶生成式大模型 DriveGPT,中文名「雪湖·海若」,该模型参数规模达到 1200 亿,可用于解决自动驾驶研发过程中困扰已久的认知决策问题,并通过能力迭代,最终实现端到端自动驾驶。
此前,受制于传统模型「数据量小、基于规则」等局限性,智能驾驶技术进展一度较为缓慢,甚至不少从业者都对未来产生了自我怀疑,在这样的背景下,两年前,毫末率先投入到大模型技术的研发之中,旨在寻找新的突破。
经历了先行探索和反复验证,毫末成功找到了突破口——生成式大模型,通过在行业首个将 GPT 落地到自动驾驶领域,大大加速了更高阶智能驾驶的落地应用。
「生成式大模型将成为自动驾驶系统进化的关键,基于 Transformer 大模型训练的感知、认知算法会逐步在车端进行落地部署。」毫末董事长张凯在 HAOMO AI DAY 上对行业未来发展趋势作出论断。
毫末 CEO 顾维灏也表示:「DriveGPT 雪湖·海若将会重塑汽车智能化技术路线,让辅助驾驶进化更快,让自动驾驶更早到来。」
顾维灏在自动驾驶技术领域的眼光独到,布局非常领先。
事实上,毫末在 2021 年就已经开始了 Transformer 大模型技术的探索,并快速落地应用到 BEV 视觉感知算法当中,然后又以五大模型的方式来实现自动驾驶感知、认知算法的快速升级,现在这些大模型将统一到 DriveGPT 生成式大模型当中,目标将实现端到端自动驾驶。
毫末的探索始终走在行业技术探索的前列。
据了解,新摩卡 DHT-PHEV 即将首发搭载 DriveGPT 雪湖·海若量产上市,届时,用户市场还将迎来一轮新的震撼。
「毫末真正重塑了行业信心,」一位业内人士略微激动地说道,「这将是一场革命。」
01、DriveGPT 雪湖·海若,如何颠覆智能驾驶
在介绍 DriveGPT 雪湖·海若之前,先回顾一下 ChatGPT 的概念,其全称是 Chat Generative Pre-trained Transformer,字面意思是用于聊天的生成式预训练 Transformer 大模型。
其中 Transformer 是 ChatGPT 的重点,最早由谷歌在 2017 年提出,该模型基于注意力机制的设计,可以实现出色的算法并行性,因而迅速在自然语言处理(NLP) 领域流行起来,ChatGPT 就是其最新成果。
Transformer 大模型对于智能驾驶来说也不陌生,在 NLP 中奠定了核心地位之后,被逐渐被引入计算机视觉(CV)领域,后又被特斯拉、毫末智行等行业龙头先行引入自动驾驶系统中,用于提升感知端的模型效果。
如今,毫末在 Transformer 大模型的应用上更进一步,将其率先拓展到智能驾驶系统认知端,DriveGPT 雪湖·海若由此诞生。
从同样使用 Transformer 大模型的角度来说,ChatGPT 和 DriveGPT 雪湖·海若属于同宗同源。
其中,ChatGPT 是对话式的生成式自然语言模型,输入是自然语言的文本串,输出是自然语言的文本,可以完成通用的下游语言生成任务,比如多轮对话、代码生成、翻译、数学 运算等能力。
而毫末 DriveGPT 雪湖·海若是用于自动驾驶场景的生成式大模型,输入是感知融合后的文本序列,输出是自动驾驶场景文本序列,即将自动驾驶场景 Token 化,形成「Drive Language」,最终完成自车的决策规控、障碍物预测以及决策逻辑链的输出等任务。
DriveGPT 雪湖·海若首先在预训练阶段通过引入量产驾驶数据,训练初始模型,再通过引入驾驶接管 Clips 数据完成反馈模型 (Reward Model) 的训练,然后再通过强化学习的方式,使用反馈模型去不断优化迭代初始模型,形成对自动驾驶认知决策模型的持续优化。
具体来说,DriveGPT 雪湖·海若会通过人类反馈强化学习的方式进行迭代,用 DriveGPT 雪湖·海若最新模型 (Active Model) 对真实场景 Case 做生成,产出多种场景序列结果,再用反馈模型给这些结果进行打分排序,目标是把好的结果排上来,差的结果排下去,然后与初始模型 (Pretrain-Model) 的生成概率做比较,放大比分。最后通过强化学习的方式将参数再次更新到最新模型 (Active Model) 中,一直反复这个迭代过程。
其中,Reward Model(反馈模型) 的训练过程是独立的,使用带有偏序关系的 Pair 样本对来训练,这些样本对来自于接管 Case,毫末将与人类驾驶结果相似的模型结果作为正样本,与被接管轨迹相似的作为负样本,这样来构建偏序对集合,再利用 LTR(Learning To Rank) 的思路去训练 Reward Model,进而得到一个打分模型。
此外,DriveGPT 雪湖·海若还可以输出决策逻辑链:即在输入端提供 Prompts(提示语),根据提示输出含有决策逻辑链 (Chain of Thought) 的未来序列。
毫末 CSS 自动驾驶场景库是 CoT 的重要输入,拥有超过几十万个细颗粒度场景,将 Prompt 提示语和完整决策过程的样本交给模型去学习,学到推理关系,从而将完整驾驶策略拆分为自动驾驶场景的动态识别过程,完成可理解、可解释的推理逻辑链生成。
除了用作认知决策,DriveGPT 雪湖·海若还可以逐步应用到城市 NOH、捷径推荐、智能陪练以及脱困场景中。
有了 DriveGPT 雪湖·海若的加持,车辆行驶会更安全;动作更人性、更丝滑,并有合理的逻辑告诉驾驶者,车辆为何选择这样的决策动作。
对于普通用户来说,车辆越来越像老司机,用户对智能产品的信任感会更强,理解到车辆的行为都是可预期、可理解的。
尽管 DriveGPT 雪湖·海若刚出世就拥有强大的功能,但这还不是它的「终局」,毫末对于 DriveGPT 雪湖·海若的目标是实现端到端自动驾驶,后续毫末会持续将多个大模型的能力整合到 DriveGPT 雪湖·海若中。
与此同时,毫末也对外构建 DriveGPT 雪湖·海若生态,通过对行业提供开放服务,促进自动驾驶的从业者和研究机构,快速构建基础能力,释放创新。
汽车之心获知,毫末 DriveGPT 雪湖·海若首批定向邀请了北京交通大学计算机与信息技术学院、高通、火山引擎、华为云、京东科技、四维图新、魏牌新能源、英特尔等加入。
事实上,毫末对于大模型的开放从 DriveGPT 雪湖·海若的中文名「雪湖·海若」即可窥见。
据了解,「海若」一词出自《庄子·秋水》中的神话人物北海若,在该书中,另一神话人物河伯请教北海若,何谓大小之分,北海若教导河伯说,不因天地而觉大,不因毫末而觉小。
毫末据此把 DriveGPT 中文名命名为「海若」,寓意着智慧包容、海纳百川,为行业发展贡献力量。
02、自动驾驶生成式大模型「第一枪」,为何由毫末打响
自动驾驶领域顶级玩家众多,毫末凭何在全球首个推出了自动驾驶生成式大模型 DriveGPT 雪湖·海若?
要回答这个问题,首先要理清楚毫末 DriveGPT 雪湖·海若的本质,它是应用在智能驾驶上的人工智能,就必然离不开人工智能三要素:算法、数据和算力,而这三者恰恰是毫末具备领先性优势的地方。
首先在算法的技术路线上,毫末早早就坚定选择走渐进式发展路线,比「跃进式」玩家的量产时间更早,更快形成规模化,从用户真实使用场景中积累足够多的数据。
毫末还清晰地提出了从自动驾驶 1.0 时代到自动驾驶 3.0 时代的演进路径,并率先进入以数据驱动为核心的新时代。
从这时开始,自动驾驶获取的数据量与数据多样性将呈现指数级膨胀,在深度学习主导中,与大模型相辅相成,真正去解决自动驾驶最后的长尾难题。
在 2021 年 12 月第四届 HAOMO AI DAY 上,毫末发布中国首个数据智能体系 MANA,其由四大板块组成,分别是 TARS、LUCAS、VENUS 和 BASE。
其中,BASE 是整个系统架构的底层,包括数据底座、数据融合、PoseidonOS 等。
其他三大板块置于上层:
- TARS 代表毫末智行的开发的原型算法,包括感知、规划决策、地图定位、仿真引擎;LUCAS 是提取数据价值,以数据驱动系统能力持续迭代的核心子系统,解决场景泛化,评测和部署的问题;VENUS 则是数据看板,以参考标准评价算法的好坏。
<span style
【本文来自易车号作者汽车之心,版权归作者所有,任何形式转载请联系作者。内容仅代表作者观点,与易车无关】
以上就是关于ChatGPT新题材龙头相关问题的回答。希望能帮到你,如有更多相关问题,您也可以联系我们的客服进行咨询,客服也会为您讲解更多精彩的知识和内容。
推荐阅读:
如何开通ChatGPT权限(怎么打开chatroulette)