HOME 首页
SERVICE 服务产品
XINMEITI 新媒体代运营
CASE 服务案例
NEWS 热点资讯
ABOUT 关于我们
CONTACT 联系我们
创意岭
让品牌有温度、有情感
专注品牌策划15年

    近几年比较新的优化算法(近几年比较新的优化算法有哪些)

    发布时间:2023-04-22 09:44:01     稿源: 创意岭    阅读: 132        

    大家好!今天让创意岭的小编来大家介绍下关于近几年比较新的优化算法的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。

    开始之前先推荐一个非常厉害的Ai人工智能工具,一键生成原创文章、方案、文案、工作计划、工作报告、论文、代码、作文、做题和对话答疑等等

    只需要输入关键词,就能返回你想要的内容,越精准,写出的就越详细,有微信小程序端、在线网页版、PC客户端

    官网:https://ai.de1919.com

    创意岭作为行业内优秀的企业,服务客户遍布全球各地,如需了解SEO相关业务请拨打电话175-8598-2043,或添加微信:1454722008

    本文目录:

    近几年比较新的优化算法(近几年比较新的优化算法有哪些)

    一、优化算法总结

    本文介绍一下机器学习和深度学习中常用的优化算法和优化器以及一些其他我知道的优化算法,部分算法我也没有搞懂,就先记录下来以后慢慢研究吧.*_*.

    1.梯度下降算法(Gradient Descent)

    梯度下降法可以参考我另一篇文章 机器学习-线性回归 里的讲解,这里就不在重复叙述.这里需要强调一下,深度学习里常用的SGD,翻译过来是随机梯度下降,但是实质是mini-batch梯度下降(mini-batch-gd),或者说是两者的结合更准确一些.

    SGD的优点是,算法简单,计算量小,在函数为凸函数时可以找到全局最优解.所以是最常用的优化算法.缺点是如果函数不是凸函数的话,很容易进入到局部最优解而无法跳出来.同时SGD在选择学习率上也是比较困难的.

    2.牛顿法

    牛顿法和拟牛顿法都是求解无约束最优化问题的常用方法,其中牛顿法是迭代算法,每一步需要求解目标函数的海森矩阵的逆矩阵,计算比较复杂.

    牛顿法在求解方程根的思想:在二维情况下,迭代的寻找某一点x,寻找方法是随机一个初始点x_0,目标函数在该点x_0的切线与x坐标轴的交点就是下一个x点,也就是x_1.不断迭代寻找x.其中切线的斜率为目标函数在点x_0的导数(梯度),切必过点(x_0,f(x_0)).所以迭代的方程式如图1,为了求该方程的极值点,还需要令其导数等于0,也就是又求了一次导数,所以需要用到f(x)的二阶导数.

    在最优化的问题中,牛顿法提供了一种求解的办法. 假设任务是优化一个目标函数f, 求函数ff的极大极小问题, 可以转化为求解函数f导数等于0的问题, 这样求可以把优化问题看成方程求解问题(f的导数等于0). 剩下的问题就和牛顿法求解方程根的思想很相似了.

    目标函数的泰勒展开式:

    化简后:

    这样就得到了与图1相似的公式,这里是二维的,在多维空间上,求二阶导数就是求海森矩阵,因为是分母,所以还需要求海森矩阵的逆矩阵.

    牛顿法和SGD的区别:

    牛顿法是二阶求导,SGD是一阶求导,所以牛顿法要收敛的更快一些.SGD只考虑当前情况下梯度下降最快的方向,而牛顿法不仅考虑当前梯度下降最快,还有考虑下一步下降最快的方向.

    牛顿法的优点是二阶求导下降速度快,但是因为是迭代算法,每一步都需要求解海森矩阵的逆矩阵,所以计算复杂.

    3.拟牛顿法(没搞懂,待定)

    考虑到牛顿法计算海森矩阵比较麻烦,所以它使用正定矩阵来代替海森矩阵的逆矩阵,从而简化了计算过程.

    常用的拟牛顿法有DFP算法和BFGS算法.

    4.共轭梯度法(Conjugate Gradient)

    共轭梯度法是介于最速下降法与牛顿法之间的一个方法,它仅需利用一阶导数信息,但克服了最速下降法收敛慢的缺点,又避免了牛顿法计算海森矩阵并求逆的缺点.共轭梯度法不仅是解决大型线性方程组最有用的方法之一,也是解大型非线性最优化最有效的算法之一.

    5.拉格朗日法

    参考SVM里的讲解 机器学习-SVM

    6.动量优化法(Momentum)

    动量优化法主要是在SGD的基础上,加入了历史的梯度更新信息或者说是加入了速度更新.SGD虽然是很流行的优化算法,但是其学习过程很慢,因为总是以同样的步长沿着梯度下降的方向.所以动量是为了加速学习的方法.

    其中第一行的减号部分是计算当前的梯度,第一行是根据梯度更新速度v,而α是新引进的参数,在实践中,α的一般取值为 0.5,0.9 和 0.99.和学习率 一样,α 也会随着时间不断调整.一般初始值是一个较小的值,随后会慢慢变大.

    7.Nesterov加速梯度(NAG, Nesterov accelerated gradient)

    NAG是在动量优化算法的基础上又进行了改进.根据下图可以看出,Nesterov 动量和标准动量之间的区别体现在梯度计算上, Nesterov 动量中,梯度计算在施加当前速度之后.因此,Nesterov 动量可以解释为往标准动量方法中添加了一个校正因子

    8.AdaGrad算法

    AdaGrad算法,自适应优化算法的一种,独立地适应所有模型参数的学习率,缩放每个参数反比于其所有梯度历史平均值总和的平方根.具有代价函数最大梯度的参数相应地有个快速下降的学习率,而具有小梯度的参数在学习率上有相对较小的下降.通俗一点的讲,就是根据实际情况更改学习率,比如模型快要收敛的时候,学习率步长就会小一点,防止跳出最优解.

    其中g是梯度,第一行的分母是计算累计梯度的平方根, 是为了防止分母为0加上的极小常数项,α是学习率.

    Adagrad的主要优点是不需要人为的调节学习率,它可以自动调节.但是依然需要设置一个初始的全局学习率.缺点是随着迭代次数增多,学习率会越来越小,最终会趋近于0.

    9.RMSProp算法

    RMSProp修改 AdaGrad 以在非凸设定下效果更好,改变梯度积累为指数加权的移动平均.AdaGrad旨在应用于凸问题时快速收敛.

    10.AdaDelta算法

    11.Adam算法

    Adam是Momentum和RMSprop的结合体,也就是带动量的自适应优化算法.

    12.Nadam算法

    13.模拟退火算法

    14.蚁群算法

    15.遗传算法

    动量是为了加快学习速度,而自适应是为了加快收敛速度,注意学习速度快不一定收敛速度就快,比如步长大学习速度快,但是很容易跳出极值点,在极值点附近波动,很难达到收敛.

    未完待定....

    参考:

    《统计学习方法》  李航    著

    《深度学习》  花书

    二、相对于遗传算法,蚁群算法等新的优化方法,传统的优化算法有哪些?

    梯度法,共轭梯度法,牛顿法,变尺度法;

    坐标轮换法,随即搜索法,共轭方向法,单纯形法,复合形法;

    惩罚函数法等。

    三、当前流行的可用于参数优化的有哪些算法

    对称密码体系的代表是 DES AES

    非对称或者叫公钥密码体系的代表是 RSA ECC

    HASH算法的代表是 MD5 SHA-1 SHA-256 SHA-384 。。。

    数字签名的代表是 DSS

    流密码的代表是 RC4

    over

    这些是最主要的一些算法 密码学教科书上必讲的 其实现在密码加密算法成百上千种 太多了

    关键是要掌握它们的思想 很多算法基本思想都是一样的

    四、常用优化器算法归纳介绍

    优化器是神经网络训练过程中,进行梯度下降以寻找最优解的优化方法。不同方法通过不同方式(如附加动量项,学习率自适应变化等)侧重于解决不同的问题,但最终大都是为了加快训练速度。

    这里就介绍几种常见的优化器,包括其原理、数学公式、核心思想及其性能;

    核心思想: 即针对每次输入的训练数据,计算输出预测与真值的Loss的梯度;

    从表达式来看,网络中参数的更新,是不断向着最小化Loss函数的方向移动的:

    优点:

    简单易懂,即对于相应的最优解(这里认为是Loss的最小函数),每次变量更新都是沿着局部梯度下降最快的方向,从而最小化损失函数。

    缺点:

    不同于标准梯度下降法(Gradient Descent)一次计算所有数据样本的Loss并计算相应的梯度,批量梯度下降法(BGD, Batch Gradient Descent)每次只取一个小批次的数据及其真实标签进行训练,称这个批次为mini-batch;

    优点:

    缺点:

    随机梯度下降法的 batch size 选择不当可能导致模型难以收敛;由于这种方法是在一次更新中,就对整个数据集计算梯度,所以计算起来非常慢,遇到很大量的数据集也会非常棘手,而且不能投入新数据实时更新模型。

    我们会事先定义一个迭代次数 epoch,首先计算梯度向量 params_grad,然后沿着梯度的方向更新参数 params,learning rate 决定了我们每一步迈多大。

    Batch gradient descent 对于凸函数可以收敛到全局极小值,对于非凸函数可以收敛到局部极小值。

    和 BGD 的一次用所有数据计算梯度相比,SGD 每次更新时对每个样本进行梯度更新,对于很大的数据集来说,可能会有相似的样本,这样 BGD 在计算梯度时会出现冗余,而 SGD 一次只进行一次更新,就没有冗余,而且比较快,并且可以新增样本。

    即训练时,每次只从一批训练样本中随机选取一个样本进行梯度下降;对随机梯度下降来说,只需要一次关注一个训练样本,一点点把参数朝着全局最小值的方向进行修改了。

    整体数据集是个循环,其中对每个样本进行一次参数更新

    缺点:

    梯度下降速度比较慢,而且每次梯度更新时往往只专注与局部最优点,而不会恰好指向全局最优点;

    单样本梯度更新时会引入许多噪声(跟训练目标无关的特征也会被归为该样本分类的特征);

    SGD 因为更新比较频繁,会造成 cost function 有严重的震荡。

    BGD 可以收敛到局部极小值,当然 SGD 的震荡可能会跳到更好的局部极小值处。

    当我们稍微减小 learning rate,SGD 和 BGD 的收敛性是一样的。

    优点:

    当处理大量数据时,比如SSD或者faster-rcnn等目标检测模型,每个样本都有大量候选框参与训练,这时使用随机梯度下降法能够加快梯度的计算。

    随机梯度下降是通过每个样本来迭代更新一次,如果样本量很大的情况,那么可能只用其中部分的样本,就已经将 迭代到最优解了,对比上面的批量梯度下降,迭代一次需要用到十几万训练样本,一次迭代不可能最优,如果迭代10次的话就需要遍历训练样本10次。缺点是SGD的噪音较BGD要多,使得SGD并不是每次迭代都向着整体最优化方向。所以虽然训练速度快,但是准确度下降,并不是全局最优。虽然包含一定的随机性,但是从期望上来看,它是等于正确的导数的。

    梯度更新规则:

    MBGD 每一次利用一小批样本,即 n 个样本进行计算,这样它可以降低参数更新时的方差,收敛更稳定,另一方面可以充分地利用深度学习库中高度优化的矩阵操作来进行更有效的梯度计算。

    和 SGD 的区别是每一次循环不是作用于每个样本,而是具有 n 个样本的批次。

    超参数设定值: n 一般取值在 50~256

    缺点:(两大缺点)

    鞍点就是:一个光滑函数的鞍点邻域的曲线,曲面,或超曲面,都位于这点的切线的不同边。例如这个二维图形,像个马鞍:在x-轴方向往上曲,在y-轴方向往下曲,鞍点就是(0,0)。

    为了应对上面的两点挑战就有了下面这些算法

    核心思想:

    不使用动量优化时,每次训练的梯度下降方向,都是按照当前批次训练数据计算的,可能并不能代表整个数据集,并且会有许多噪声,下降曲线波动较大:

    添加动量项之后,能够有效减小波动,从而加快训练速度:

    当我们将一个小球从山上滚下来时,没有阻力的话,它的动量会越来越大,但是如果遇到了阻力,速度就会变小。

    加入的这一项,可以使得梯度方向不变的维度上速度变快,梯度方向有所改变的维度上的更新速度变慢,这样就可以加快收敛并减小震荡。

    优点:

    通过动量更新,参数向量会在有持续梯度的方向上增加速度;

    使梯度下降时的折返情况减轻,从而加快训练速度;

    缺点:

    如果数据集分类复杂,会导致 和 时刻梯度 向量方向相差较大;在进行向量求和时,得到的 会非常小,反而使训练速度大大下降甚至模型难以收敛。

    这种情况相当于小球从山上滚下来时是在盲目地沿着坡滚,如果它能具备一些先知,例如快要上坡时,就知道需要减速了的话,适应性会更好。

    目前为止,我们可以做到,在更新梯度时顺应 loss function 的梯度来调整速度,并且对 SGD 进行加速。

    核心思想:

    自适应学习率优化算法针对于机器学习模型的学习率,采用不同的策略来调整训练过程中的学习率,从而大大提高训练速度。

    这个算法就可以对低频的参数做较大的更新,对高频的做较小的更新,也因此,对于稀疏的数据它的表现很好,很好地提高了 SGD 的鲁棒性,例如识别 Youtube 视频里面的猫,训练 GloVe word embeddings,因为它们都是需要在低频的特征上有更大的更新。

    Adagrad 的优点是减少了学习率的手动调节

    式中, 表示第 个分类, 表示第 迭代同时也表示分类 累计出现的次数。 表示初始的学习率取值(一般为0.01)

    AdaGrad的核心思想: 缩放每个参数反比于其所有梯度历史平均值总和的平方根。具有代价函数最大梯度的参数相应地有较大的学习率,而具有小梯度的参数又较小的学习率。

    缺点:

    它的缺点是分母会不断积累,这样学习率就会收缩并最终会变得非常小。

    这个算法是对 Adagrad 的改进,

    和 Adagrad 相比,就是分母的 换成了过去的梯度平方的衰减平均值,指数衰减平均值

    这个分母相当于梯度的均方根 root mean squared (RMS),在数据统计分析中,将所有值平方求和,求其均值,再开平方,就得到均方根值 ,所以可以用 RMS 简写:

    其中 的计算公式如下, 时刻的依赖于前一时刻的平均和当前的梯度:

    梯度更新规则:

    此外,还将学习率 换成了 RMS[Δθ],这样的话,我们甚至都不需要提前设定学习率了:

    超参数设定值: 一般设定为 0.9

    RMSprop 是 Geoff Hinton 提出的一种自适应学习率方法。

    RMSprop 和 Adadelta 都是为了解决 Adagrad 学习率急剧下降问题的,

    梯度更新规则:

    RMSprop 与 Adadelta 的第一种形式相同:(使用的是指数加权平均,旨在消除梯度下降中的摆动,与Momentum的效果一样,某一维度的导数比较大,则指数加权平均就大,某一维度的导数比较小,则其指数加权平均就小,这样就保证了各维度导数都在一个量级,进而减少了摆动。允许使用一个更大的学习率η)

    超参数设定值:

    Hinton 建议设定 为 0.9, 学习率 为 0.001。

    这个算法是另一种计算每个参数的自适应学习率的方法。相当于 RMSprop + Momentum

    除了像 Adadelta 和 RMSprop 一样存储了过去梯度的平方 vt 的指数衰减平均值 ,也像 momentum 一样保持了过去梯度 mt 的指数衰减平均值:

    如果 和 被初始化为 0 向量,那它们就会向 0 偏置,所以做了偏差校正,通过计算偏差校正后的 和 来抵消这些偏差:

    梯度更新规则:

    超参数设定值:

    建议

    示例一

    示例二

    示例三

    上面情况都可以看出,Adagrad, Adadelta, RMSprop 几乎很快就找到了正确的方向并前进,收敛速度也相当快,而其它方法要么很慢,要么走了很多弯路才找到。

    由图可知自适应学习率方法即 Adagrad, Adadelta, RMSprop, Adam 在这种情景下会更合适而且收敛性更好。

    如果数据是稀疏的,就用自适用方法,即 Adagrad, Adadelta, RMSprop, Adam。

    RMSprop, Adadelta, Adam 在很多情况下的效果是相似的。

    Adam 就是在 RMSprop 的基础上加了 bias-correction 和 momentum,

    随着梯度变的稀疏,Adam 比 RMSprop 效果会好。

    整体来讲,Adam 是最好的选择。

    很多论文里都会用 SGD,没有 momentum 等。SGD 虽然能达到极小值,但是比其它算法用的时间长,而且可能会被困在鞍点。

    如果需要更快的收敛,或者是训练更深更复杂的神经网络,需要用一种自适应的算法。

    各种优化器Optimizer原理:从SGD到AdamOptimizer

    深度学习——优化器算法Optimizer详解(BGD、SGD、MBGD、Momentum、NAG、Adagrad、Adadelta、RMSprop、Adam)

    以上就是关于近几年比较新的优化算法相关问题的回答。希望能帮到你,如有更多相关问题,您也可以联系我们的客服进行咨询,客服也会为您讲解更多精彩的知识和内容。


    推荐阅读:

    近几年什么行业前景好(近几年什么行业最赚钱)

    近几年网络热词(近几年网络热词相继出现从2008年时)

    杭州市近几天天气预报(杭州市近几天天气预报情况)

    八佰伴绍兴(八佰伴绍兴在哪里)

    杭州微慕科技有限公司上市(杭州微慕科技有限公司上市了嘛)