HOME 首页
SERVICE 服务产品
XINMEITI 新媒体代运营
CASE 服务案例
NEWS 热点资讯
ABOUT 关于我们
CONTACT 联系我们
创意岭
让品牌有温度、有情感
专注品牌策划15年

    谷歌的大数据技术(谷歌的大数据技术有哪些)

    发布时间:2023-04-22 06:43:24     稿源: 创意岭    阅读: 54        

    大家好!今天让创意岭的小编来大家介绍下关于谷歌的大数据技术的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。

    开始之前先推荐一个非常厉害的Ai人工智能工具,一键生成原创文章、方案、文案、工作计划、工作报告、论文、代码、作文、做题和对话答疑等等

    只需要输入关键词,就能返回你想要的内容,越精准,写出的就越详细,有微信小程序端、在线网页版、PC客户端

    官网:https://ai.de1919.com

    创意岭作为行业内优秀的企业,服务客户遍布全球各地,如需了解SEO相关业务请拨打电话175-8598-2043,或添加微信:1454722008

    本文目录:

    谷歌的大数据技术(谷歌的大数据技术有哪些)

    一、大数据 从“技术驱动”转向“应用驱动”

    大数据:从“技术驱动”转向“应用驱动”

    继物联网、云计算之后,大数据已经成为当前信息技术产业最受关注的概念之一。大数据时代的来临,使得领域和行业边界愈加模糊,应用创新超越技术本身,生产模式向服务化转变,数据作为一种资产为企业带来新商业价值,数据开放让政府治理和个人福祉都面临着机遇和挑战……无论个人、企业组织、社会团体,还是国家和经济体,都能藉此实现大数据梦想。

    当前,全球大数据产业正处于蓬勃发展的孕育期和机遇期。核心关键技术正在加快发展和更新换代,各类解决方案提供商加大力度宣传造势,尤其是围绕电信、航空、交通、生物、城市管理等重点领域描绘美好蓝图,力求推动行业应用和商业模式创新,抢占产业增长点。与此同时,小微企业和创业者对大数据热情高涨,期望借此机会实现高速成长的梦想。由于整个大数据产业开始转向应用创新阶段,高成长的预期让各方都对未来抱以乐观的态度。

    从“技术驱动”转向“应用驱动”

    作为一个独立的产业,大数据的产业体系框架表现为“两纵三横”:“两纵”基于技术的基础程度,分为底层技术和应用层技术,前者是共性、基础性技术,如Hadoop框架、Hbase数据库、Mahout算法集等;后者是“二次开发”行为,包括各类个性化方案、产品与服务。“三横”基于处理的流程顺序,分为基础设施、分析系统和应用工具,也可进一步细化为数据的采集、存储、处理、分析、服务五方面。目前,“两纵三横”的产业体系已经趋于成熟,能够应对绝大多数的产业应用需求。

    广义的大数据应用本质上是一种“增值分析”,前景有着近似无限的可能,不受任何行业、资源、地域、用户的约束。从这个层面看,各产业领域未来发展方向几乎都能和大数据挂钩。以“十二五”国家战略性新兴产业发展规划为例,很多技术前沿的描述和布局,均与大数据相一致或关联,或是可以通过大数据实现。如新一代信息技术产业布局了物联网、移动终端设备、云计算、海量数据处理软件;节能环保产业布局了高效储能、节能监测和能源计量;生物医药产业布局了生物资源样本库、基因测序,以及基于物联网的远程健康管理服务等。

    由于大数据技术兴起于互联网时代,互联网的快速发展与其持有的开放、共享、合作等观念密切相关,因而大数据技术的创新也引入了互联网的这种价值观。例如有不少大数据技术是开源的,可无偿供给全世界的开发者使用和改进。开源项目、开源社区和开放性创新联盟组织的成熟更是推动了大数据核心技术的发展,催生了多种用于存储、处理和分析大数据的新产品。这一过程有效降低了产业技术的壁垒,推动更多的企业和创业者介入,进一步加快了技术应用转化的过程,有助于产业的迅速成长。

    虽然大数据产业的“技术驱动”色彩十分明显,与“应用驱动”阶段尚有一段距离,但这一转变过程正在加速进行。

    细化的产业竞争策略逐步成型

    大数据产业是典型的知识密集型服务业,除了基础设施环节会带来一定能耗之外,其余环节均为零能耗、高附加值。其在初始资本、法规监管等方面的准入门槛极低,但对人才资源的要求较高。为此,产业竞争呈现出数量大、水平高的特点,企业竞争策略逐步分化。

    尽管大数据从业者正在急剧增加--几乎所有的信息技术企业都在此领域布局,同时创业者持续不断地进入,竞争者甚多,然而由此带来的并非过度竞争,而是良性竞争,最终将推动技术的创新和价值的实现。

    这主要归功于两个原因:一是高创新的属性。大数据技术是信息技术领域中的高附加值环节,以谷歌、亚马逊等为代表的大数据企业,无论是在技术先进性、创新活跃度还是在市场份额上,都在全球处于领先位置。二是高增长的预期。作为企业个体,在产业急速成长的预期之下,基本都选择了追求专业性的策略,依靠产品性能和服务取胜,而摈弃了追求低成本的策略。

    在竞争过程中,不同类型的竞争者各具优势。按照技术的变革性与应用水平,主要分化为三类竞争者:一是“互联网颠覆者”,谷歌以及各类大数据开源项目发展了全新的基础技术与数据库构架,依靠免费、开源的所谓互联网模式,彻底改变了原有的技术标准与游戏规则,颠覆了以往各自为阵的信息技术产业。

    二是“初生牛犊”,在新的规则面前,大公司与创业者处在同一条起跑线上,一些拥有核心人才与市场嗅觉的创业企业,在特定工具、专业平台方面迅速抢占先机,填补市场空白,获得快速发展,在产业链中拥有了一席之地。

    三是“系统集成商”,像微软、IBM这样的传统IT巨头拥有强大的资金、研发能力和市场资源。他们能够敏锐意识到自我革命的紧迫性并马上采取应对举措,积极收购大数据相关企业,将收购获得的技术产品组装为面向行业的应用解决方案,并加强大数据商业营销。

    另外,政府也是大数据产业的重要一环,主要体现在政府对公共数据的开放上这将使政府在促进产业发展上扮演更加重要的角色。

    2009年,刚上任的美国总统奥巴马签署的首份总统备忘录即为《透明和开放的政府》,随后建立了统一的政府数据开放门户网站:Data.Gov,逐步开放政府拥有的公共数据,并提供多种应用程序接口,供开发者创建特色应用。截至2014年初,该网站开放的数据集已经超过了85000项,汇集了1200余个应用程序和软件工具、手机插件,其中超过300个是由个人或民间组织开发。新的商业模式和企业随之产生,如FlightCaster公司基于美国交通统计局、联邦航空局交通管制中心警报、美国气象局和航班运行状况信息网站FlightStats的数据,提供航班晚点预报,比航空公司的正式通知早6个小时,且准确率达到85%-90%.

    数据驱动型的商业模式创新

    数据驱动型的商业模式有如雨后春笋,在全球大量涌现。按照数据的获取、管理、分析、应用环节的区分方式,可以将大数据的商业模式分为数据托管和交易平台、关系挖掘和沉淀价值利用、数据社交和跨界连接三种类型。

    数据托管和交易平台模式应用已有数十年之久,是发展最为成熟、最为普遍的大数据商业模式,本质是发挥规模效应,降低单个企业在数据信息存储和寻找上的投入成本。主要业务形态有空间出租托管、数据商店、数据市场等,典型的代表企业为亚马逊、EMC2、DropBox.

    近年来引入“云”的概念,从简单的数据存储,逐步扩展到数据聚合平台,最终形成云服务;而以独特数据资源进行的整合朝着纵向产业链上下游整合和横向多种产业整合两个方向发展,促使了一站式数据商店和数据交易平台的出现。如亚马逊、微软等企业均建立了可以交易应用程序和高级数据集的数据商店,目前已有数万亿个数据点、数千个订阅、数百个应用程序。

    关系挖掘是媒体热炒的主流大数据商业模式,也是数据科学的主要应用模式。核心是通过数据发现隐藏的相关性,最终用于指导商业、精准化服务与辅助决策。

    实现这种模式需要一些先决条件,主要是面向数据的处理分析环节:一是目标领域的完全量化,如互联网广告领域,从广告点击到用户购买行为,均有完整详实的数据记录;二是数据处理能力的大幅提升,要能够处理非关系型数据,并在海量条件下保持实时快速的性能。该模式的难点在于需要颠覆常规的用户思维和需求逻辑,典型类型是沉淀价值的利用,将一些通常无意义的数据甚至是垃圾数据进行利用,最终得出有价值的结论。

    例如,谷歌公司利用数十亿用户搜索时的错误拼写记录来提升其拼写检查器的智能性。就目前而言,基于关系挖掘的大数据模式尚未成熟,但承载了社会各界的较高期望:这种模式将有助于驱动产业转型和发展新兴产业,如推动生物医药等研发密集型产业、企业咨询等知识密集型产业向数据密集型产业转型,推动零售、交通等传统服务业向现代服务业转型,推动传统制造业向智能制造业转型等。

    与前两种模式不同,数据社交和跨界连接模式直接面向每一个社会个体,本质上是充分挖掘物理世界的个体资源,将其变成虚拟世界的一个节点,与其他的节点进行连接、交互和交易,从而大大降低各类商业化业务的推广成本,并形成新兴业态。这种模式正在走向成熟,最典型的代表就是O2O.

    例如微信成为了连接线上线下、开展移动支付的重要入口;打车软件有效降低了供需双方的信息不对称,提升了出租车市场的智能化程度;可穿戴设备将人体的讯息进一步量化,并提供决策建议;苹果Passbook软件为用户提供了一个智能的电子卡包。推行这种模式也有几个必要条件,主要是针对数据的采集传输环节:移动化,需要带有位置服务、能够发射无线信号的智能终端;稳定连接,需要高速、泛在的外部网络环境;在线支付,依靠用户最终的支付行为实现盈利;持续感知能力,需要先进的传感器技术、低功耗芯片技术以及电池技术作为保障。

    二、智能化战争中左右战争胜负的新变量:连接力、计算力、认知力

    智能化战争:“强者胜”的三个维度

    杨耀辉 张三虎 周正

    引言

    战争制胜机理从来都是在 科技 进步的推动下悄然发生变化。从热兵器时代的火力制胜,到机械化时代的机动力制胜,再到信息化时代的信息力制胜,实际上都是在开辟战斗力生成新维度的过程中,对原有战斗力因子形成“降维”打击。智能化战争建立在火药化、机械化、信息化充分发展的基础之上,作战双方的火力、机动力、信息力迟早都会达到或接近同一个水平,连接力、计算力、认知力等新的战斗力因子,则成为左右战争胜负的新变量。

    连接力强者胜

    连接产生智能。最令人惊叹的莫过于人类脑细胞,数百亿个神经元并不存储信息,但在连接过程中不断传递信息并激发出新的信息。当前,军事领域正在利用连接来寻求智能化的延展。

    连接力强者胜,反映的是群体智能的胜利。“蜂群”式作战平台、碎片状战力群组、分布式武器部署,将是智能化战争的作战景象,战场胜负的砝码在经历了“从数量到质量”的转换之后,又回到了“从质量到数量”上来。近年来,中东战场上出现的几千美元一架的低端无人机,在战场上的表现却并不是“凑数”的样子,集群式出现令一些大国军队极为头疼。这种规模化群体与传统战场上的个体叠加不同,它们依托泛在网络,用连接的方式形成一种群体智能效应,对传统中的高价值平台产生巨大冲击。2021年5月,美国国防部发布的《联合全域作战战略》中明确,联合全域指挥控制就是“连接一切、无处不在”。而美军先进战斗管理系统则试图把U-2、F-16、F-35、F-22、XQ-58、MQ-4C等有人、无人作战平台连接到一起。连接力强者胜,已经成为智能化战争的制胜关键。

    连接力强者胜,推动的是“杀伤网”的构建。传统的杀伤链路,其连接呈“线性”,是顺序的、递进的、单行的,极易出现断链。智能化战争,在“连接一切”的背景下,全域空间内的作战资源进入同一作战体系,杀伤链条上的各个执行单元被分散在小型化、无人化、在线化作战平台上,形成此断彼通的“杀伤网”。连接力越强,进入作战体系的可选择资源就越多,杀伤链路上可选择的节点就越多,体系的韧性、弹性、应激性就越强。从杀伤链到“杀伤网”的升级,推动不同时间节点进入作战链路的平台灵活搭配,给对手呈现出一种随机网络式的复杂景象,而自身却能按作战任务需求,采取类似“网络打车服务”一样的资源高效动态连接方式,达成各类作战资源的快速建链,完成自我分配、自我组织、自我控制下的目标打击行动,在作战过程中呈现出能判断、有选择、会变通的智能化样子。

    连接力强者胜,突显的是自适应作战体系。网络时代,每一次成功连接的背后都有一系列用户和用户之间的自适应交互,连接平台只是提供一个“桥梁”,并没有过多地介入到谁和谁的连接上。“连接一切”条件下的智能化作战平台构成的作战体系,其敏捷适应性将比网络时代更进一步。这种敏捷适应基于物理实体的数字化模型和运行状态的数字化表征,在特定系统的支持下,各类作战资源“在用”“饱和”“空闲”等状态即时感知,并完整映射到“基础网+作战云+数字孪生体”的虚拟空间,形成“全息”对照的战场态势,每一个作战平台都可以“全维”抽取关键信息,“全域”拼接作战场景、“全程”推演打击行动,并实时感知友邻平台的运行状态。在这样的全透明战场空间,任何个体要想避免被其他成员抛弃,必须主动向体系贡献自己的能力,从而自然地产生出一种自适应调整的体系能力。

    计算力强者胜

    很长一段时间里,计算多是粗略概算并服务于指挥员谋略,计算力一直是战斗力的配角。智能化战争中,智能机器的计算能力大大超越人类,人类的决策、行为和意识都受到机器计算的影响,计算力强者胜成为战争制胜的重要一面。

    计算力强者胜,反映的是“算料”从“DB”到“BD”的质变。数据即“算料”,其实一直存在。早期的像会计账本之类,电算化时代是机读穿孔卡带,信息化时代升级成为诸如Database之类的数据库,即“DB”。到了智能化时代,万物互联加快了数据产生的速度,运用大数据Big data方法挖掘信息宝藏成为适应时代的必然选择,即“BD”。从“DB”到“BD”,两个字母位置的简单调换,反映的却是数据从量变到质变的重大跃迁。“DB”是对客观事实的记录、抽样和再现,“BD”则是对数据的关联关系分析并推理预测客观事实,已经接近甚至超出人类在因果关系分析上的技能。比如,谷歌公司曾运用大数据技术,分析了5000万条美国人检索最频繁的词汇,成功预测出美国冬季流感的传播。智能化战争中,数以万计的智能机器,必将产生数不胜数的数据,如何利用大数据手段提升“算料”处理能力,对敌方作战企图、战场走势等做出准确预测和判断,将是决定对抗胜负的重要一极。

    计算力强者胜,推动的是算力的云边端供给模式。传统的中军帐、参谋部、指挥所都是“中心计算模式”,其弊端是计算结果滞后甚至偏离战场态势,问题的根源是算力不足。智能化战争中,每一个机器在做出行动时都要进行一系列的计算处理,仅一个“大脑”的中心计算模式已显得力不从心,“云+边+端”的新计算模式则应运而生。谁的云中心能够通过策略测算,从复杂场景中“窥出”真正的战场走势;谁的边缘计算中心能够快速将计算能力推送到作战前沿侧,为前端平台提供中等强度的近实时场景模拟推演;谁的智能作战平台能够在对抗活动中,快速规划出武器选择、打击窗口、攻击路线等,将成为左右战局发展走势的关键所在。近年来,美军大力发展类似F-22战机充当“战斗云”,提高无人系统的人工智能技术含量,推动自主作战平台的自协同能力提升等,都是对“云+边+端”计算模式的尝试。

    计算力强者胜,突显的是算法的机器升级迭代。2019年,星际争霸Ⅱ人机对抗赛中两位人类顶尖选手以1 10的比分惨败,使人们对机器“只会计算、不会算计”的印象发生颠覆性改变。显然,在神经网络、深度学习等技术的推动下,智能机器具备了超越人类的用大量数据拟合出新算法的能力。当智能武器代替人类成为战场上的主角,支撑它们观察战场、分析战场、适应战场能力的关键——算法,将左右战场胜负的走向。算法战,已经从人类大脑层面转换到机器类脑层面,谁的机器学习能力越强,谁的算法迭代升级就越快,谁的决策就越符合对抗态势,谁就将在智能化战争中占据算法战的顶端。

    认知力强者胜

    形成对战场的统一认知,是作战体系中各个参战单元形成合力的关键。信息化战争主要解决信息“从信号到数据再到知识”的价值转换过程,智能化战争则更注重在“知识到智慧”的过程中提质增效。

    认知力强者胜,反映的是作战环节从“OODA”到“OD”的进阶。从本质上讲,平台中心战、网络中心战、决策中心战,“OODA”环路上观察、判断、决策、行动等链条没有变,但不同阶段的行动特点发生了很大变化。机械化战争时代,“OODA”环路按部就班,环环相扣,一步慢、步步慢,一招领先、步步主动;信息化战争时代,发现即摧毁,观察“O”和行动“A”融为一体;智能化战争时代,作战双方的观察能力达到同一水平,战场趋于双向全时透明,谁也不能从“OODA”的第一个“O”即观察上占有多少优势,只有在第二个“O”即判断上一决高下,作战对抗从“OODA”四个环节进阶到“OD”两个环节上。在智能化战争的对抗过程中,信息驱动是源头,统一认知是关键。有了统一的认知,各参战平台才能建立起指向同一作战企图下的任务分析、规划和安排,群体性决策、自适应编组、分布式行动等具有智能化特征的活动,才能真正被激发出来并最终涌现出体系作战能力。

    认知力强者胜,推动的是作战指挥从艺术到智慧的转进。智能化战争中,“AI军师”“智能参谋”进入作战指挥活动,带来的变化是指挥艺术里面添加了机器计算的成分。智能机器在算速和算法上的优长,使它们能通过海量数据关联分析,对战场态势进行呈现、分析和预测,辅助指挥员预判敌方企图、动向和威胁,从而促使作战指挥由基于“经验”的艺术流,向基于“经验+算法”的智慧型转进,把认知对抗从人类大脑领域拓展到了“人脑+机器脑”的新空间。美军2020年8月组织的“阿尔法空战”实验中,AI战机5 0击败人类飞行员,其背后的基础是40亿次仿真训练。智能化战争中,纯人脑的认知能力水平必将受到来自机器脑认知的强力挑战,而机器脑失去人脑的介入也会失去战争灵魂,“人脑+机器脑”协作融合形成智慧型认知才是制胜之道。

    认知力强者胜,突显的是作战策略从近忧到远虑的延展。智能化战争时代,极易产生“机器信赖症”,任由机器对战场上的作战行动进行控制。但战争的复杂性告诫我们,机器的判断永远代替不了人类。“阿尔法狗”智能围棋虽然设定了四个策略来赢得棋局,但它仍有无法逾越的短视局限,其从繁就简的策略设计中,会对非关键因子进行“剪枝”处理,而被“剪枝”的恰恰可能是战争偶然的诱因。智能化战争中,发挥智能机器的优势,要在建立起“‘人机’交互、有人监督”的条件下,运用复杂系统中各分层之间相对独立的原理,对战局进行分层分域拆解,制定全局、局部和战术行动策略,形成一整套多级关联的规则库,让智能机器在指挥人员的监督下能够顺利地计算下去,在时间约束条件下快速得到一个基本满意的方案。一方面,避免机器陷入无休止的运算;另一方面,让机器在人类指引下对战局进行“远虑”,走向“谋全局而不是求一隅”的高度。

    (作者单位:国防 科技 大学信息通信学院)

    “智胜”机理:一个亟待研究的课题

    刘光明

    编者按 现代战争发生了深刻变化,最根本的是制胜机理变了,要想赢得战争必须把现代战争制胜机理搞透。当前,战争形态加速向信息化战争演变,智能化战争初现端倪。智能化战争的制胜机理是什么,有什么新变化,表现为哪些新特点?为把这些问题解答清楚,本刊特推出“聚焦智能化战争制胜机理”系列文章,欢迎广大读者献计献策、积极争鸣,共同推动智能化战争制胜机理研究走向深入。

    当前,由人工智能引领的新一轮 科技 革命和产业变革方兴未艾,“人工智能就像先前的导弹、卫星一样,无论你是否有所准备都将登上人类战争的 历史 舞台”,智能化战争已经大步走来。打赢未来可能发生的智能化战争,核心是厘清智能化战争制胜机理。

    厘清智能化战争制胜机理独特内涵

    厘清智能化战争制胜机理,首先要把“机理”一词的内涵界定准确。笔者认为,“机”可理解为奥秘、门道,“理”可解读为道理、理由。所谓智能化战争制胜机理,即打赢智能化战争的门道(路径)和道理。为进一步厘清这一内涵,需要准确把握三对概念的区别与联系。

    从机理与规律的关系把握独特内涵。规律是事物内在的本质的必然的联系,战争制胜规律是与战争制胜有关各种因素的本质联系和发展的必然趋势。战争作为复杂巨系统,制胜也具有复杂性,众多的制胜规律往往在战场上同时起作用。如果对具体战例作具体分析会发现,每一次胜负较量必定有某个规律起决定性作用,其他规律则起着辅助的但也是不可缺少的作用。战争制胜机理则是战争制胜因素在一定条件下触发制胜规律、发挥制胜作用的链路及其道理。制胜机理依赖制胜规律,体现了制胜规律发挥作用时的途径和依据,但单凭制胜规律本身不能成为制胜机理。用相对简单的话来概括,即制胜规律是制胜机理的基础,制胜机理是制胜规律的应用之道。

    从机理与机制的关系把握独特内涵。机制是事物内部的构造、功能和相互关系,作战制胜机制是作战体系各要素互动形成合力、实现制胜的内在机制,如集效聚优、并行联动都是机制,是对有关制胜机理的运用方法和实现方式,且这些方式方法体现一定的规则,带有某种制度化的特征。在信息化战争中,对情报侦察、指挥控制、火力打击和综合保障等作战要素进行综合集成,对陆、海、空等作战单元进行优化重组,会形成多种多样的制胜机制。这些制胜机制大都包含这样的制胜机理,即:事件转化为信息、信息转化为态势、态势转化为认知、认知转化为决策、决策转化为行动的信息制胜链路,等等。由此可见,制胜机理是内在的“道”,更为抽象,而制胜机制是运用道的“术”,更为具体。

    从机理与理论的关系把握独特内涵。认识、把握和灵活运用战争制胜规律和机理,需要从理论和战略策略上作出正确的指导。睿智的军事理论家,总是在发现新的制胜规律和机理后,作出理论上的加工和创造,由此形成新的军事指导理论。可见,军事理论创新的核心在于揭示和厘清新的战争制胜规律和机理,进而概括出新的战争指导。世界军事史上,马汉的“海权”理论、杜黑的“制空权”理论、富勒的“机械化战争”理论、图哈切夫斯基的“大纵深作战”理论、格雷厄姆的“高边疆”理论等,都揭示了相应的战争制胜规律和机理,引领了军事潮流,改变了战争面貌。可以说,战争制胜机理是军事理论创新的基础和源泉,军事指导理论是战争制胜机理的灵动运用和理论升华。

    辩证把握智能化战争制胜机理多重意蕴

    智能化战争的制胜机理包括战争制胜的一般机理,同时又体现着算法博弈的鲜明特点;在战略、战役、战术等层面都有相应的制胜机理,同时也都与算法博弈紧密联系。由于受多种因素制约,每一场战争具体的制胜机理都可能有所不同。这里,仅列举几类带有一定普遍性的制胜机理。

    以“强”打“弱”的“智胜”机理。“强胜弱败”是带有一定普遍性的战争制胜规律。即使是那些以弱胜强的战例,往往也须在局部和特定时段形成对敌的力量优势才能真正取胜。依据“强胜弱败”规律,以强打弱便成为带有通用性的战争制胜机理。这里的“强”,是整体战斗力的强。在机械化战争时代,整体战斗力的强大主要体现为兵力和火力优势。在信息化战争时代,军队能打胜仗有赖于信息力优势。而在智能化战争时代,智力优势对战斗力的贡献率远高于其他要素。在智能化战争对抗中,人的智能广泛渗透到作战领域、移植到武器系统,智能水平更高更强的一方,能够更好地开发和运用以强打弱的“智胜”机理,甚至据此设计战争、主导战局发展,取得最终胜利。

    以“高”打“低”的“智胜”机理。这里的“高”“低”,主要指“代差”“维度差”。通常情况下,运用更高级战争形态和作战样式的一方能够打赢尚在运用较低维度战争形态和作战样式的一方。比如,普遍使用火枪的部队几乎都能胜过使用大刀长矛的部队。如果说“高”胜“低”败是制胜规律,那么以“高”打“低”的那些门道及理由便成为制胜机理。在智能化战争进程中,针对对方作战体系的弱点进行打击,使其“智能”降低或失效,实施“降维打击”,便是以“高”打“低”“智胜”机理的具体运用。还要看到,智能化战争时代很可能存在由低到高的多个发展阶段,尽可能让自己处于高级阶段,攻击对手使其处于低维度的阶段,也是以“高”打“低”“智胜”机理的运用。

    以“快”打“慢”的“智胜”机理。随着科学技术的强劲推动,战争中“快”的内涵在不断刷新。在第一次世界大战期间,坦克机动速度每小时只能达到4 8英里,到二战期间装甲集群已能实施闪击战。近些年我们认为超级计算机已经很快了,但量子计算机处理“高斯玻色取样”的速度比最快的超级计算机快一百万亿倍,量子算法比经典算法实现了指数级的加速,人工智能将实现质的飞跃。未来智能化战争在算法的支撑下,预警时间提前,决策时间缩短,作战行动向前延伸,“观察-判断-决策-行动”周期大幅压缩,“瞬时摧毁”升级为“即时摧毁”,真正进入发现即摧毁的“秒杀”时代。

    以“巧”打“拙”的“智胜”机理。在一些经典战例中,我们往往能够看到指挥员运用灵活机动的战略战术,变被动为主动,化劣势为优势,体现了“巧”能胜“拙”的制胜规律和以“巧”打“拙”的制胜机理。智能化战争中的“巧”,依托算法优势,开始从指挥员的大脑中走出来,被赋予拥有“智能”的武器系统。当智能化战争发展到一定阶段,全域多维、各种类型的智能化作战平台能够快速耦合作战力量,根据任务需求构建作战体系,自主实施协同作战,任务结束迅速回归待战状态,呈现智能自主趋势。未来智能化战争将向极地、深海、太空等领域拓展,以“巧”打“拙”的“智胜”机理也会相应拓展,开发出更多更新的“智胜”路径。

    前瞻 探索 和开发智能化战争制胜机理

    当今世界, 科技 革命和军事革命相互影响,战争形态在加速演变,战争制胜机理也在不断更新。在智能化战争大幕缓缓开启的背景下,必须紧盯智能化战争制胜机理的发展趋势,变被动为主动,变跟进为引领,前瞻 探索 和开发智能化战争制胜机理,牢牢掌控打赢智能化战争的主动权。

    开发新的制胜机理。 历史 和现实表明,先进的科学技术一旦被运用于军事,将使战争制胜机理发生深刻变化,从而使现有的作战指导、条令法规和部队编制随之改变。在人工智能飞速进步的今天,军事智能的发展不可限量,未来智能化战争具体的制胜机理也必然超出现有的预料。应积极 探索 现有先进技术可能运用于智能化战争的潜能, 探索 其可能的制胜机理。全面分析对手无人化作战体系的薄弱节点和我之优势,从目标靶点反推制胜机理,提出军事创新需求,精准研发战略性、前沿性、颠覆性技术,推动战争“ 游戏 规则”向于我有利的方向转变。

    验证新的制胜机理。智能化战争制胜机理的研究成果究竟管不管用,需要用实践来检验。在相对和平时期,应加强实战化军事训练和针对性作战实验的检验,在检验中发现问题、修正认识,使新的制胜机理尽可能科学、周密。在时机和条件成熟时,推动新的智能化战争制胜机理成为军事训练全方位变革、整体性提升的依据,坚持以战领训、以训促战,做到按智能化战争实战要求训练,实现作战和训练一体化。要以我为主,适度借鉴外军,破除定性分析多、定量分析少的局限,大力构建完善智能化战争实验室,打通从制胜机理到作战概念再到实验平台的创新链路,推动去粗取精、去伪存真,提高智能化战争制胜机理研究成果的科学性、权威性。

    升华新的制胜机理。新的战争制胜机理是推进军事理论创新的深层依据。当我们发现了新的以“强”打“弱”、以“高”打“低”、以“快”打“慢”、以“巧”打“拙”等具体的“智胜”机理后,就可以契合这一机理提出核心作战概念、作战原则和战争指导等,经过系统加工形成关于智能化战争的新的军事理论。有人说,“丰富的想象力和深刻的洞察力,远比百分之百的准确性更为重要”。要适度鼓励战争设计上的“异想天开”,引导有创见的研究人员在深刻理解军事智能“技术创意”及其衍生而来的制胜机理的基础上,提出新的“战争创意”。要基于智能化战争制胜机理的研究,深化军事理论创新,加快形成具有时代性、引领性、独特性的军事理论体系。

    (作者单位:国防大学国家安全学院)

    三、大数据处理的五大关键技术及其应用

    作者 | 网络大数据

    来源 | 产业智能官

    数据处理是对纷繁复杂的海量数据价值的提炼,而其中最有价值的地方在于预测性分析,即可以通过数据可视化、统计模式识别、数据描述等数据挖掘形式帮助数据科学家更好的理解数据,根据数据挖掘的结果得出预测性决策。其中主要工作环节包括:

    大数据采集 大数据预处理 大数据存储及管理 大数据分析及挖掘 大数据展现和应用(大数据检索、大数据可视化、大数据应用、大数据安全等)。

    一、大数据采集技术

    数据是指通过RFID射频数据、传感器数据、社交网络交互数据及移动互联网数据等方式获得的各种类型的结构化、半结构化(或称之为弱结构化)及非结构化的海量数据,是大数据知识服务模型的根本。重点要突破分布式高速高可靠数据爬取或采集、高速数据全映像等大数据收集技术;突破高速数据解析、转换与装载等大数据整合技术;设计质量评估模型,开发数据质量技术。

    大数据采集一般分为:

    大数据智能感知层:主要包括数据传感体系、网络通信体系、传感适配体系、智能识别体系及软硬件资源接入系统,实现对结构化、半结构化、非结构化的海量数据的智能化识别、定位、跟踪、接入、传输、信号转换、监控、初步处理和管理等。必须着重攻克针对大数据源的智能识别、感知、适配、传输、接入等技术。

    基础支撑层:提供大数据服务平台所需的虚拟服务器,结构化、半结构化及非结构化数据的数据库及物联网络资源等基础支撑环境。重点攻克分布式虚拟存储技术,大数据获取、存储、组织、分析和决策操作的可视化接口技术,大数据的网络传输与压缩技术,大数据隐私保护技术等。

    二、大数据预处理技术

    完成对已接收数据的辨析、抽取、清洗等操作。

    抽取:因获取的数据可能具有多种结构和类型,数据抽取过程可以帮助我们将这些复杂的数据转化为单一的或者便于处理的构型,以达到快速分析处理的目的。

    清洗:对于大数据,并不全是有价值的,有些数据并不是我们所关心的内容,而另一些数据则是完全错误的干扰项,因此要对数据通过过滤“去噪”从而提取出有效数据。

    三、大数据存储及管理技术

    大数据存储与管理要用存储器把采集到的数据存储起来,建立相应的数据库,并进行管理和调用。重点解决复杂结构化、半结构化和非结构化大数据管理与处理技术。主要解决大数据的可存储、可表示、可处理、可靠性及有效传输等几个关键问题。开发可靠的分布式文件系统(DFS)、能效优化的存储、计算融入存储、大数据的去冗余及高效低成本的大数据存储技术;突破分布式非关系型大数据管理与处理技术,异构数据的数据融合技术,数据组织技术,研究大数据建模技术;突破大数据索引技术;突破大数据移动、备份、复制等技术;开发大数据可视化技术。

    开发新型数据库技术,数据库分为关系型数据库、非关系型数据库以及数据库缓存系统。其中,非关系型数据库主要指的是NoSQL数据库,分为:键值数据库、列存数据库、图存数据库以及文档数据库等类型。关系型数据库包含了传统关系数据库系统以及NewSQL数据库。

    开发大数据安全技术:改进数据销毁、透明加解密、分布式访问控制、数据审计等技术;突破隐私保护和推理控制、数据真伪识别和取证、数据持有完整性验证等技术。

    四、大数据分析及挖掘技术

    大数据分析技术:改进已有数据挖掘和机器学习技术;开发数据网络挖掘、特异群组挖掘、图挖掘等新型数据挖掘技术;突破基于对象的数据连接、相似性连接等大数据融合技术;突破用户兴趣分析、网络行为分析、情感语义分析等面向领域的大数据挖掘技术。

    数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。

    数据挖掘涉及的技术方法很多,有多种分类法。根据挖掘任务可分为分类或预测模型发现、数据总结、聚类、关联规则发现、序列模式发现、依赖关系或依赖模型发现、异常和趋势发现等等;根据挖掘对象可分为关系数据库、面向对象数据库、空间数据库、时态数据库、文本数据源、多媒体数据库、异质数据库、遗产数据库以及环球网Web;根据挖掘方法分,可粗分为:机器学习方法、统计方法、神经网络方法和数据库方法。

    机器学习中,可细分为归纳学习方法(决策树、规则归纳等)、基于范例学习、遗传算法等。统计方法中,可细分为:回归分析(多元回归、自回归等)、判别分析(贝叶斯判别、费歇尔判别、非参数判别等)、聚类分析(系统聚类、动态聚类等)、探索性分析(主元分析法、相关分析法等)等。神经网络方法中,可细分为:前向神经网络(BP算法等)、自组织神经网络(自组织特征映射、竞争学习等)等。数据库方法主要是多维数据分析或OLAP方法,另外还有面向属性的归纳方法。

    数据挖掘主要过程是:根据分析挖掘目标,从数据库中把数据提取出来,然后经过ETL组织成适合分析挖掘算法使用宽表,然后利用数据挖掘软件进行挖掘。传统的数据挖掘软件,一般只能支持在单机上进行小规模数据处理,受此限制传统数据分析挖掘一般会采用抽样方式来减少数据分析规模。

    数据挖掘的计算复杂度和灵活度远远超过前两类需求。一是由于数据挖掘问题开放性,导致数据挖掘会涉及大量衍生变量计算,衍生变量多变导致数据预处理计算复杂性;二是很多数据挖掘算法本身就比较复杂,计算量就很大,特别是大量机器学习算法,都是迭代计算,需要通过多次迭代来求最优解,例如K-means聚类算法、PageRank算法等。

    从挖掘任务和挖掘方法的角度,着重突破:

    可视化分析。数据可视化无论对于普通用户或是数据分析专家,都是最基本的功能。数据图像化可以让数据自己说话,让用户直观的感受到结果。 数据挖掘算法。图像化是将机器语言翻译给人看,而数据挖掘就是机器的母语。分割、集群、孤立点分析还有各种各样五花八门的算法让我们精炼数据,挖掘价值。这些算法一定要能够应付大数据的量,同时还具有很高的处理速度。 预测性分析。预测性分析可以让分析师根据图像化分析和数据挖掘的结果做出一些前瞻性判断。 语义引擎。语义引擎需要设计到有足够的人工智能以足以从数据中主动地提取信息。语言处理技术包括机器翻译、情感分析、舆情分析、智能输入、问答系统等。 数据质量和数据管理。数据质量与管理是管理的最佳实践,透过标准化流程和机器对数据进行处理可以确保获得一个预设质量的分析结果。

    预测分析成功的7个秘诀

    预测未来一直是一个冒险的命题。幸运的是,预测分析技术的出现使得用户能够基于历史数据和分析技术(如统计建模和机器学习)预测未来的结果,这使得预测结果和趋势变得比过去几年更加可靠。

    尽管如此,与任何新兴技术一样,想要充分发挥预测分析的潜力也是很难的。而可能使挑战变得更加复杂的是,由不完善的策略或预测分析工具的误用导致的不准确或误导性的结果可能在几周、几个月甚至几年内才会显现出来。

    预测分析有可能彻底改变许多的行业和业务,包括零售、制造、供应链、网络管理、金融服务和医疗保健。AI网络技术公司Mist Systems的联合创始人、首席技术官Bob fridy预测:“深度学习和预测性AI分析技术将会改变我们社会的所有部分,就像十年来互联网和蜂窝技术所带来的转变一样。”。

    这里有七个建议,旨在帮助您的组织充分利用其预测分析计划。

    1.能够访问高质量、易于理解的数据

    预测分析应用程序需要大量数据,并依赖于通过反馈循环提供的信息来不断改进。全球IT解决方案和服务提供商Infotech的首席数据和分析官Soumendra Mohanty评论道:“数据和预测分析之间是相互促进的关系。”

    了解流入预测分析模型的数据类型非常重要。“一个人身上会有什么样的数据?” Eric Feigl - Ding问道,他是流行病学家、营养学家和健康经济学家,目前是哈佛陈氏公共卫生学院的访问科学家。“是每天都在Facebook和谷歌上收集的实时数据,还是难以访问的医疗记录所需的医疗数据?”为了做出准确的预测,模型需要被设计成能够处理它所吸收的特定类型的数据。

    简单地将大量数据扔向计算资源的预测建模工作注定会失败。“由于存在大量数据,而其中大部分数据可能与特定问题无关,只是在给定样本中可能存在相关关系,”FactSet投资组合管理和交易解决方案副总裁兼研究主管Henri Waelbroeck解释道,FactSet是一家金融数据和软件公司。“如果不了解产生数据的过程,一个在有偏见的数据上训练的模型可能是完全错误的。”

    2.找到合适的模式

    SAP高级分析产品经理Richard Mooney指出,每个人都痴迷于算法,但是算法必须和输入到算法中的数据一样好。“如果找不到适合的模式,那么他们就毫无用处,”他写道。“大多数数据集都有其隐藏的模式。”

    模式通常以两种方式隐藏:

    模式位于两列之间的关系中。例如,可以通过即将进行的交易的截止日期信息与相关的电子邮件开盘价数据进行比较来发现一种模式。Mooney说:“如果交易即将结束,电子邮件的公开率应该会大幅提高,因为买方会有很多人需要阅读并审查合同。”

    模式显示了变量随时间变化的关系。“以上面的例子为例,了解客户打开了200次电子邮件并不像知道他们在上周打开了175次那样有用,”Mooney说。

    3 .专注于可管理的任务,这些任务可能会带来积极的投资回报

    纽约理工学院的分析和商业智能主任Michael Urmeneta称:“如今,人们很想把机器学习算法应用到海量数据上,以期获得更深刻的见解。”他说,这种方法的问题在于,它就像试图一次治愈所有形式的癌症一样。Urmeneta解释说:“这会导致问题太大,数据太乱——没有足够的资金和足够的支持。这样是不可能获得成功的。”

    而当任务相对集中时,成功的可能性就会大得多。Urmeneta指出:“如果有问题的话,我们很可能会接触到那些能够理解复杂关系的专家” 。“这样,我们就很可能会有更清晰或更好理解的数据来进行处理。”

    4.使用正确的方法来完成工作

    好消息是,几乎有无数的方法可以用来生成精确的预测分析。然而,这也是个坏消息。芝加哥大学NORC (前国家意见研究中心)的行为、经济分析和决策实践主任Angela Fontes说:“每天都有新的、热门的分析方法出现,使用新方法很容易让人兴奋”。“然而,根据我的经验,最成功的项目是那些真正深入思考分析结果并让其指导他们选择方法的项目——即使最合适的方法并不是最性感、最新的方法。”

    罗切斯特理工学院计算机工程系主任、副教授shanchie Jay Yang建议说:“用户必须谨慎选择适合他们需求的方法”。“必须拥有一种高效且可解释的技术,一种可以利用序列数据、时间数据的统计特性,然后将其外推到最有可能的未来,”Yang说。

    5.用精确定义的目标构建模型

    这似乎是显而易见的,但许多预测分析项目开始时的目标是构建一个宏伟的模型,却没有一个明确的最终使用计划。“有很多很棒的模型从来没有被人使用过,因为没有人知道如何使用这些模型来实现或提供价值,”汽车、保险和碰撞修复行业的SaaS提供商CCC信息服务公司的产品管理高级副总裁Jason Verlen评论道。

    对此,Fontes也表示同意。“使用正确的工具肯定会确保我们从分析中得到想要的结果……”因为这迫使我们必须对自己的目标非常清楚,”她解释道。“如果我们不清楚分析的目标,就永远也不可能真正得到我们想要的东西。”

    6.在IT和相关业务部门之间建立密切的合作关系

    在业务和技术组织之间建立牢固的合作伙伴关系是至关重要的。客户体验技术提供商Genesys的人工智能产品管理副总裁Paul lasserr说:“你应该能够理解新技术如何应对业务挑战或改善现有的业务环境。”然后,一旦设置了目标,就可以在一个限定范围的应用程序中测试模型,以确定解决方案是否真正提供了所需的价值。

    7.不要被设计不良的模型误导

    模型是由人设计的,所以它们经常包含着潜在的缺陷。错误的模型或使用不正确或不当的数据构建的模型很容易产生误导,在极端情况下,甚至会产生完全错误的预测。

    没有实现适当随机化的选择偏差会混淆预测。例如,在一项假设的减肥研究中,可能有50%的参与者选择退出后续的体重测量。然而,那些中途退出的人与留下来的人有着不同的体重轨迹。这使得分析变得复杂,因为在这样的研究中,那些坚持参加这个项目的人通常是那些真正减肥的人。另一方面,戒烟者通常是那些很少或根本没有减肥经历的人。因此,虽然减肥在整个世界都是具有因果性和可预测性的,但在一个有50%退出率的有限数据库中,实际的减肥结果可能会被隐藏起来。

    六、大数据展现与应用技术

    大数据技术能够将隐藏于海量数据中的信息和知识挖掘出来,为人类的社会经济活动提供依据,从而提高各个领域的运行效率,大大提高整个社会经济的集约化程度。

    在我国,大数据将重点应用于以下三大领域:商业智能 、政府决策、公共服务。例如:商业智能技术,政府决策技术,电信数据信息处理与挖掘技术,电网数据信息处理与挖掘技术,气象信息分析技术,环境监测技术,警务云应用系统(道路监控、视频监控、网络监控、智能交通、反电信诈骗、指挥调度等公安信息系统),大规模基因序列分析比对技术,Web信息挖掘技术,多媒体数据并行化处理技术,影视制作渲染技术,其他各种行业的云计算和海量数据处理应用技术等。

    四、大数据和智慧交通有哪些应用的案例

    大数据方面的应用案例

    在医疗方面,纽约的mountsinai医院利用数千名患者的数据、历年汇报的流感爆发数据等数据与病毒的变异过程做交叉比对。通过这种工作,科学家和医生可以预测病毒如何传播,以及对抗这些病毒的最佳途径;甚至有可能使用预测分析来判断病毒的传播方式,然后采取行动来限制这一传播。据说这家医院有望在未来阻止流感的发生。

    在交通方面,浙江某城市与英特尔合作,安装了1000个数字监控设备,100个智能监测点系统,超过300个检查点的电子警察,和500多个视频监控系统。通过更有效地监测交通和拥堵数据,改善交通流量,减少道路交通事故。

    在废物处理方面, 英国曼彻斯特垃圾处理局有一套系统,能够利用数据使得产生的垃圾被尽可能多的再次利用。通过对来自不同地区的卡车进出加工厂时进行称重,能够了解每个地区所产生的垃圾数量。这些数据帮助当局出台了相应的政策,鼓励那些特定的社区更好的垃圾回收和垃圾减量。

    在建筑方面, 住房慈善机构hact从400,000座住房中持续不断地收集数据,并进行了各种数据分析。通过数据来发现设计、建造、布局中存在的潜在问题,进而在建造新的楼宇时优化相关的参数,避免这些问题,改进政府保障房的的维修,规划空间合理使用。

    智能应用服务,Google提供的大数据分析智能应用包括客户情绪分析、交易风险(欺诈分析)、产品推荐、消息路由、诊断、客户流失预测、法律文案分类、电子邮件内容过滤、政治倾向预测、物种鉴定等多个方面。据称,大数据已经给Google每天带来2300万美元的收入。例如,一些典型应用如下:

    (1)基于Map Reduce,Google的传统应用包括数据存储、数据分析、日志分析、搜索质量以及其他数据分析应用。

    (2)基于Dremel系统, Google推出其强大的数据分析软件和服务 — BigQuery,它也是Google自己使用的互联网检索服务的一部分。Google已经开始销售在线数据分析服务,试图与市场上类似亚马逊网络服务(Amazon Web Services)这样的企业云计算服务竞争。这个服务,能帮助企业用户在数秒内完成万亿字节的扫描。

    (3)基于搜索统计算法,Google推出搜索引擎的输写纠错、统计型机器翻译等服务。

    (4)Google的趋势图应用。通过用户对于搜索词的关注度,很快的理解社会上的热点是什么。对广告主来说,它的商业价值就是很快的知道现在用户在关心什么,他们应该在什么地方投入一个广告。据此,Google公司也开发了一些大数据产品,如“Brand Lift in Adwords”、“Active GRP”等,以帮助广告客户分析和评估其广告活动的效率。

    (5)Google Instant。输入关键词的过程,Google

    Instant 会边打边预测可能的搜索结果。

    谷歌的大数据平台架构仍在演进中,追去的目标是更大数据集、更快、更准确的分析和计算。这将进一步引领大数据技术发展的方向。

    在竞选方面,直到2012年,奥巴马的数据团队对数以千万计的选民邮件进行了大数据挖掘,精确预测出了更可能拥护奥巴马的选民类型,并进行了有针对性的宣传,从而帮助奥巴马成为了美国历史上唯一一位在竞选经费处于劣势下实现连任的总统。只要数据量够大,够及时,挖掘够深刻,就可以洞悉每个选民的投票几率。

    在教育方面,"以物联网、云计算等综合技术的成熟为基础,在学生管理数据库中挖掘出有价值的数据,经过过程性和综合性的考虑,找到学生各种行为之间的内在联系,考量背后的逻辑关系,并作出恰当的教学决策。以某集团最新出版的全球少儿美语旗舰课程为例,引入了首款应用于少儿英语学习领域的MyEnglishLab在线学习辅导系统(以下简称MEL),应用大数据技术全程实时分析学生个体和班级整体的学习进度、学情反馈和阶段性成果,从而及时找到问题所在对症下药,实现对学习过程和结果的动态管理。

    智慧交通的应用案例

    根据ITS114的不完全统计,截至2015年12月31日,包括城市智慧交通和高速公路机电市场的全年千万项目统计规模为182.5亿,其中主要分为四大市场1.交通管控市场千万项目规模为84.24亿。2.智慧交通/智能运输市场千万项目规模为20.33亿。3.高速公路机电市场千万项目规模为75.8亿。4.平安城市千万项目规模为56.6亿。以上四个市场都有着很多的智慧交通方面的应用案例。

    具体的在交通管控市场方面, 当前各个省积极构建的交通运行监测与应急指挥系统,还有围绕着视频、图像分析,从而实现在治安、交通、工业制造、汽车、人工智能等等诸多领域的应用亦是智慧交通的典型案例。如深圳榕享的"交通仿真与智能管控机器人"可实时采集视频检测数据与线圈检测数据,将采集的交通流数据、信号配时等数据输入到建立的仿真路网模型中,进行实时的交通系统仿真。通过一体化交通仿真模型,机器人能快速找出路网拥堵点以及分析路网的常发性拥堵点,并对交通流运营状况的演变进行预测和分析。在交通仿真与智能管控机器人平台上,还可对城市的任意交叉口的交通环境进行设置,周边居民可将相关建议"告知"机器人,实时模拟交叉口改良效果,实现全民参与、全民实践、全民创新的交通管理新模式。

    智慧交通/运输方面各种“专车”“快车”“拼车”“代驾”平台类和软件数据类的实例比比皆是,如我们都熟知的“滴滴快递”“uber"“e代驾”等app应用。

    交通工具新型技术案例方面:如无人驾驶、自动驾驶、智能车等等;在2015年12月互联网大会上李彦宏展示的无人车,李书福展现的自动驾驶技术都体现了当前智能交通工具的发展。     更近一点的是,汽车电子标识、ETC、车路协同。2015年的新能源客车市场呈爆发性增长,新能源客车销量达到37363辆,同比增长213.19%,同时2015年国务院印发《新能源公交车推广应用考核办法(试行)》、《电动汽车充电基础设施发展指南》等等政策文件,可预见的是新能源汽车将会造就一个巨大的市场,建立在新能源汽车之上的车联网也将搭上顺风车。

    平安城市也有很多已经成型的智慧交通案例。平安城市是基于GIS数字地图技术,高度整合治安监控、智能交通、数字城管、应急指挥等子系统,改变传统的静态管理和单点管理,实现实时、动态的联动管理新模式,实现了整个城市的治安、交通、城管、应急联动等各个职能部门的联动,建立了高效的城市部门联动机制,提高了城市的集成化、智慧化管理水平。根据高清视频监控系统的特点和应用需求,结合当前与今后一定时期内图像监控系统与图像应用系统的发展需要,建设一套先进的平安城市综合应用平台,为指挥调度、调查取证、应急处置、交通管理等多种后台应用提供及时、可靠的视频图像信息,服务于实战。市面上常见的平安城市系统具备的主要功能大部分都有:人脸卡口功能;交通事件检测功能;智能检索功能;道路违法抓拍功能;车辆稽查布控功能;非现场执法;分析研判功能;交通事态监控功能;视频质量检测功能;智能应用管理功能;数据格式及通信功能;远程控制功能;指挥调度功能;勤务管理功能; 设备运行状态监测功能。

    以上就是关于谷歌的大数据技术相关问题的回答。希望能帮到你,如有更多相关问题,您也可以联系我们的客服进行咨询,客服也会为您讲解更多精彩的知识和内容。


    推荐阅读:

    谷歌363谷歌搜索引擎入口(谷歌搜索引擎免费入口)

    谷歌网页版入口(谷歌在线浏览器入口)

    谷歌google入口(谷歌入口2021)

    干洗店排行榜(干洗店十大品牌排行榜)

    加盟连锁店排行榜(绝味鸭脖加盟条件及费用)