经过所有点的最短路径算法(经过所有的点求最短的路线)
大家好!今天让创意岭的小编来大家介绍下关于经过所有点的最短路径算法的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。
开始之前先推荐一个非常厉害的Ai人工智能工具,一键生成原创文章、方案、文案、工作计划、工作报告、论文、代码、作文、做题和对话答疑等等
只需要输入关键词,就能返回你想要的内容,越精准,写出的就越详细,有微信小程序端、在线网页版、PC客户端
创意岭作为行业内优秀的企业,服务客户遍布全球各地,如需了解SEO相关业务请拨打电话175-8598-2043,或添加微信:1454722008
本文目录:
一、数据结构之图:求所有节点之间的最短路径,用什么算法时间复杂度小?求答案与解释
两者时间复杂度一般都是O(n3),但对于稀疏图来说重复使用Dijkstra方法比较好!
Dijkstra算法时间复杂度为O(V*V+E),可以用优先队列进行优化,优化后时间复杂
度变为0(v*lgn)。
源点可达的话,O(V*lgV+E*lgV)=>O(E*lgV)。
当是稀疏图的情况时,此时E=V*V/lgV,所以算法的时间复杂度可为O(V^2) 。可以用优先队列进行优化,优化后时间复杂度变为0(v*lgn)。
具体详细解释你可以看看这个http://blog.chinaunix.net/uid-27164517-id-3287891.html。
二、最短路径 | 深入浅出Dijkstra算法(一)
上次我们介绍了神奇的只有 五行的 Floyd-Warshall 最短路算法 ,它可以方便的求得 任意两点的最短路径, 这称为 “多源最短路”。
这次来介绍 指定一个点(源点)到其余各个顶点的最短路径, 也叫做 “单源最短路径”。 例如求下图中的 1 号顶点到 2、3、4、5、6 号顶点的最短路径。
与 Floyd-Warshall 算法一样,这里仍然 使用二维数组 e 来存储顶点之间边的关系, 初始值如下。
我们还需要用 一个一维数组 dis 来存储 1 号顶点到其余各个顶点的初始路程, 我们可以称 dis 数组为 “距离表”, 如下。
我们将此时 dis 数组中的值称为 最短路的“估计值”。
既然是 求 1 号顶点到其余各个顶点的最短路程, 那就 先找一个离 1 号顶点最近的顶点。
通过数组 dis 可知当前离 1 号顶点最近是 2 号顶点。 当选择了 2 号顶点后,dis[2]的值就已经从“估计值”变为了“确定值”, 即 1 号顶点到 2 号顶点的最短路程就是当前 dis[2]值。
为什么呢?你想啊, 目前离 1 号顶点最近的是 2 号顶点,并且这个图所有的边都是正数,那么肯定不可能通过第三个顶点中转,使得 1 号顶点到 2 号顶点的路程进一步缩短了。 因此 1 号顶点到其它顶点的路程肯定没有 1 号到 2 号顶点短,对吧 O(∩_∩)O~
既然选了 2 号顶点,接下来再来看 2 号顶点 有哪些 出边 呢。有 2->3 和 2->4 这两条边。
先讨论 通过 2->3 这条边能否让 1 号顶点到 3 号顶点的路程变短。 也就是说现在来比较 dis[3] 和 dis[2]+e[2][3] 的大小。其中 dis[3]表示 1 号顶点到 3 号顶点的路程,dis[2]+e[2][3]中 dis[2]表示 1 号顶点到 2 号顶点的路程,e[2][3]表示 2->3 这条边。所以 dis[2]+e[2][3]就表示从 1 号顶点先到 2 号顶点,再通过 2->3 这条边,到达 3 号顶点的路程。
我们发现 dis[3]=12,dis[2]+e[2][3]=1+9=10,dis[3]>dis[2]+e[2][3],因此 dis[3]要更新为 10。这个过程有个专业术语叫做 “松弛” 。即 1 号顶点到 3 号顶点的路程即 dis[3],通过 2->3 这条边 松弛成功。 这便是 Dijkstra 算法的主要思想: 通过 “边” 来松弛 1 号顶点到其余各个顶点的路程。
同理通过 2->4(e[2][4]),可以将 dis[4]的值从 ∞ 松弛为 4(dis[4]初始为 ∞,dis[2]+e[2][4]=1+3=4,dis[4]>dis[2]+e[2][4],因此 dis[4]要更新为 4)。
刚才我们对 2 号顶点所有的出边进行了松弛。松弛完毕之后 dis 数组为:
接下来,继续在剩下的 3、4、5 和 6 号顶点中,选出离 1 号顶点最近的顶点。通过上面更新过 dis 数组,当前离 1 号顶点最近是 4 号顶点。此时,dis[4]的值已经从“估计值”变为了“确定值”。下面继续对 4 号顶点的所有出边(4->3,4->5 和 4->6)用刚才的方法进行松弛。松弛完毕之后 dis 数组为:
继续在剩下的 3、5 和 6 号顶点中,选出离 1 号顶点最近的顶点,这次选择 3 号顶点。此时,dis[3]的值已经从“估计值”变为了“确定值”。对 3 号顶点的所有出边(3->5)进行松弛。松弛完毕之后 dis 数组为:
继续在剩下的 5 和 6 号顶点中,选出离 1 号顶点最近的顶点,这次选择 5 号顶点。此时,dis[5]的值已经从“估计值”变为了“确定值”。对5号顶点的所有出边(5->4)进行松弛。松弛完毕之后 dis 数组为:
最后对 6 号顶点的所有出边进行松弛。因为这个例子中 6 号顶点没有出边,因此不用处理。 到此,dis 数组中所有的值都已经从“估计值”变为了“确定值”。
最终 dis 数组如下,这便是 1 号顶点到其余各个顶点的最短路径。
OK,现在来总结一下刚才的算法。 Dijkstra算法的基本思想是:每次找到离源点(上面例子的源点就是 1 号顶点)最近的一个顶点,然后以该顶点为中心进行扩展,最终得到源点到其余所有点的最短路径。
基本步骤如下:
在 博客 中看到两个比较有趣的问题,也是在学习Dijkstra时,可能会有疑问的问题。
当我们看到上面这个图的时候,凭借多年对平面几何的学习,会发现在“三角形ABC”中,满足不了 构成三角形的条件(任意两边之和大于第三边)。 纳尼,那为什么图中能那样子画?
还是“三角形ABC”,以A为起点,B为终点,如果按照平面几何的知识, “两点之间线段最短”, 那么,A到B的最短距离就应该是6(线段AB),但是,实际上A到B的最短距离却是3+2=5。这又怎么解释?
其实,之所以会有上面的疑问,是因为 对边的权值和边的长度这两个概念的混淆, 。之所以这样画,也只是为了方便理解(每个人写草稿的方式不同,你完全可以用别的方式表示,只要便于你理解即可)。
PS:数组实现邻接表可能较难理解,可以看一下 这里
参考资料:
Dijkstra算法是一种基于贪心策略的算法。每次新扩展一个路程最短的点,更新与其相邻的点的路程。当所有边权都为正时,由于不会存在一个路程更短的没扩展过的点,所以这个点的路程永远不会再被改变,因而保证了算法的正确性。
根据这个原理, 用Dijkstra算法求最短路径的图不能有负权边, 因为扩展到负权边的时候会产生更短的路径,有可能破坏了已经更新的点路径不会发生改变的性质。
那么,有没有可以求带负权边的指定顶点到其余各个顶点的最短路径算法(即“单源最短路径”问题)呢?答案是有的, Bellman-Ford算法 就是一种。(我们已经知道了 Floyd-Warshall 可以解决“多源最短路”问题,也要求图的边权均为正)
通过 邻接矩阵 的Dijkstra时间复杂度是 。其中每次找到离 1 号顶点最近的顶点的时间复杂度是 O(N),这里我们可以用 优先队列(堆) 来优化,使得这一部分的时间复杂度降低到 。这个我们将在后面讨论。
三、图遍历算法之最短路径Dijkstra算法
最短路径问题是图论研究中一个经典算法问题,旨在寻找图中两节点或单个节点到其他节点之间的最短路径。根据问题的不同,算法的具体形式包括:
常用的最短路径算法包括:Dijkstra算法,A 算法,Bellman-Ford算法,SPFA算法(Bellman-Ford算法的改进版本),Floyd-Warshall算法,Johnson算法以及Bi-direction BFS算法。本文将重点介绍Dijkstra算法的原理以及实现。
Dijkstra算法,翻译作戴克斯特拉算法或迪杰斯特拉算法,于1956年由荷兰计算机科学家艾兹赫尔.戴克斯特拉提出,用于解决赋权有向图的 单源最短路径问题 。所谓单源最短路径问题是指确定起点,寻找该节点到图中任意节点的最短路径,算法可用于寻找两个城市中的最短路径或是解决著名的旅行商问题。
问题描述 :在无向图 中, 为图节点的集合, 为节点之间连线边的集合。假设每条边 的权重为 ,找到由顶点 到其余各个节点的最短路径(单源最短路径)。
为带权无向图,图中顶点 分为两组,第一组为已求出最短路径的顶点集合(用 表示)。初始时 只有源点,当求得一条最短路径时,便将新增顶点添加进 ,直到所有顶点加入 中,算法结束。第二组为未确定最短路径顶点集合(用 表示),随着 中顶点增加, 中顶点逐渐减少。
以下图为例,对Dijkstra算法的工作流程进行演示(以顶点 为起点):
注:
01) 是已计算出最短路径的顶点集合;
02) 是未计算出最短路径的顶点集合;
03) 表示顶点 到顶点 的最短距离为3
第1步 :选取顶点 添加进
第2步 :选取顶点 添加进 ,更新 中顶点最短距离
第3步 :选取顶点 添加进 ,更新 中顶点最短距离
第4步 :选取顶点 添加进 ,更新 中顶点最短距离
第5步 :选取顶点 添加进 ,更新 中顶点最短距离
第6步 :选取顶点 添加进 ,更新 中顶点最短距离
第7步 :选取顶点 添加进 ,更新 中顶点最短距离
示例:node编号1-7分别代表A,B,C,D,E,F,G
(s.paths <- shortest.paths(g, algorithm = "dijkstra"))输出结果:
(s.paths <- shortest.paths(g,4, algorithm = "dijkstra"))输出结果:
示例:
找到D(4)到G(7)的最短路径:
[1] 维基百科,最短路径问题: https://zh.wikipedia.org/wiki/%E6%9C%80%E7%9F%AD%E8%B7%AF%E9%97%AE%E9%A2%98 ;
[2]CSDN,Dijkstra算法原理: https://blog.csdn.net/yalishadaa/article/details/55827681 ;
[3]RDocumentation: https://www.rdocumentation.org/packages/RNeo4j/versions/1.6.4/topics/dijkstra ;
[4]RDocumentation: https://www.rdocumentation.org/packages/igraph/versions/0.1.1/topics/shortest.paths ;
[5]Pypi: https://pypi.org/project/Dijkstar/
四、最短路Dijkstra算法怎么求起点到终点经过的路程,就是把经过的每个点都显示出来,用c和c++都可,大牛来吧
是要怎么显示,你的源程序里面已经可以显示经过的所有点了
以上就是关于经过所有点的最短路径算法相关问题的回答。希望能帮到你,如有更多相关问题,您也可以联系我们的客服进行咨询,客服也会为您讲解更多精彩的知识和内容。
推荐阅读: