HOME 首页
SERVICE 服务产品
XINMEITI 新媒体代运营
CASE 服务案例
NEWS 热点资讯
ABOUT 关于我们
CONTACT 联系我们
创意岭
让品牌有温度、有情感
专注品牌策划15年

    大数据技术的发展趋势有哪些(大数据技术的发展趋势有哪些)

    发布时间:2023-04-22 01:33:30     稿源: 创意岭    阅读: 120        

    大家好!今天让创意岭的小编来大家介绍下关于大数据技术的发展趋势有哪些的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。

    开始之前先推荐一个非常厉害的Ai人工智能工具,一键生成原创文章、方案、文案、工作计划、工作报告、论文、代码、作文、做题和对话答疑等等

    只需要输入关键词,就能返回你想要的内容,越精准,写出的就越详细,有微信小程序端、在线网页版、PC客户端

    官网:https://ai.de1919.com

    创意岭作为行业内优秀的企业,服务客户遍布全球各地,如需了解SEO相关业务请拨打电话175-8598-2043,或添加微信:1454722008

    本文目录:

    大数据技术的发展趋势有哪些(大数据技术的发展趋势有哪些)

    一、大数据未来发展方向有哪些?

    1、在大数据采集与预处理方向

    这方向最常见的问题是数据的多源和多样性,导致数据的质量存在差异,严重影响到数据的可用性。针对这些问题,目前很多公司已经推出了多种数据清洗和质量控制工具(如IBM的Data Stage)。

    2、在大数据存储与管理方向

    这方向最常见的挑战是存储规模大,存储管理复杂,需要兼顾结构化、非结构化和半结构化的数据。分布式文件系统和分布式数据库相关技术的发展正在有效的解决这些方面的问题。在大数据存储和管理方向,尤其值得我们关注的是大数据索引和查询技术、实时及流式大数据存储与处理的发展。

    3、大数据计算模式方向

    由于大数据处理多样性的需求,目前出现了多种典型的计算模式,包括大数据查询分析计算(如Hive)、批处理计算(如Hadoop MapReduce)、流式计算(如Storm)、迭代计算(如HaLoop)、图计算(如Pregel)和内存计算(如Hana),而这些计算模式的混合计算模式将成为满足多样性大数据处理和应用需求的有效手段。

    4、大数据分析与挖掘方向

    在数据量迅速膨胀的同时,还要进行深度的数据深度分析和挖掘,并且对自动化分析要求越来越高,越来越多的大数据数据分析工具和产品应运而生,如用于大数据挖掘的R Hadoop版、基于MapReduce开发的数据挖掘算法等。

    二、大数据技术的发展趋势有哪些

    2016年,我国大数据产业保持高速发展态势,各级政府和企业大力推进,技术创新取得明显突破,大数据应用推进势头良好,产业体系初具雏形,支撑能力日益增强。2017年,大数据产业发展迎来“黄金期”,产业集聚将进一步特色化发展,大数据融合应用进程加速,为做大做强数字经济、带动传统产业转型升级提供新动力。

    趋势一:政策环境持续优化,产业发展将迎来“黄金期”

    随着国家大数据战略推进实施以及配套政策的贯彻落实,大数据产业发展环境将进一步优化,社会经济各领域对大数据服务需求将进一步增强,大数据的新技术、新业态、新模式将不断涌现,产业规模将继续保持30%以上的高速增长态势。

    趋势二:大数据产业集聚,将呈现特色化发展

    大数据综合试验区建设是国家统筹推进大数据产业发展的重要举措。2016年,国家对大数据产业区域发展进行整体规划布局,共计批复了8个国家大数据综合试验区建设。2017年,随着8大国家大数据综合实验区建设不断加快,产业发展将推动形成特色领域。围绕京津冀和珠三角跨区域类综合试验区,将更加注重数据要素流通,以数据流引领技术流、物质流、资金流、人才流,支撑跨区域公共服务、社会治理和产业转移,促进区域一体化发展。结合地方产业发展和应用特色,大数据产业集聚区和大数据新型工业化产业示范基地建设也将持续推进。

    趋势三:大数据与人工智能、云计算、物联网,等技术的融合创新将更加深入

    网络信息技术领域是全球研发投入最集中、创新最活跃、应用最广泛、辐射带动作用最大的技术创新领域,是全球技术创新的竞争高地。大数据、云计算、物联网、人工智能等新一代信息技术是最典型的网络信息技术,创新驱动是其发展的原动力,新兴技术间的融合创新更是产业发展的主基调。2017年,大数据的技术发展与物联网、云计算、人工智能等新技术领域的联系将更加紧密,物联网的发展将极大提高数据的获取能力,云计算与人工智能将深刻地融入数据分析体系,融合创新将会不断地涌现和持续深入。

    趋势四:工业大数据对智能制造的,赋能效应将进一步释放

    在《大数据产业发展规划2016-2020年》中,提出了深化工业大数据创新应用的重点任务和实施工业大数据创新发展工程,加快工业大数据基础设施建设,推进工业大数据全流程应用,培育数据驱动的制造业新模式。2017年,随着《国务院关于深化制造业与互联网融合发展的指导意见》、《大数据产业发展规划2016-2020年》等政策规划的落地实施,我国将进一步深化工业云、大数据等技术在工业领域的集成应用,探索建立工业大数据中心,实施工业大数据应用示范工程,工业大数据对智能制造的赋能效应将进一步释放。

    趋势五:大数据安全和数据跨境流动,将成为国家和社会关注的焦点

    数据资源作为信息社会的重要生产要素、无形资产和社会财富,成为一个国家的基础性战略资源。近年来,由于数据在网络空间传播迅速,且当前技术手段和行政手段都无法对其实施有效监管,使得大数据安全问题和数据跨境流动安全风险日益加剧。2016年,国家和地方大力推动大数据安全创新发展。2017年,随着《中华人民共和国网络安全法》及相关配套细则的正式实施,大数据安全的市场空间将进一步释放,政府和企业在大数据安全技术、产品和服务创新方面的投入进一步加大;国家大力推进双边区域性跨境数据流动合作,建立国家间数据流通保护的协调机制,参与数据跨境流动国际标准和规则制定的积极性将不断提高。

    三、大数据的发展趋势是什么

    1、数据管理仍然困难

    大数据分析有一个相当清晰的想法:找到隐藏在大量数据中的信息模式,训练机器学习模型来发现这些模式,并将这些模型应用到生产中,实现操作自动化。您需要清理数据并在必要时重复它。

    然而,将这些数据投入生产比看上去要困难得多。对于初学者来说,从不同的孤岛收集数据可能很困难,因为需要提取、转换和加载(ETL)以及数据库技能。为机器学习练习清理和标记数据也需要大量的时间和金钱,尤其是在使用深度学习技术时。

    2、数据孤岛继续激增

    这并不难预测。在五年前的Hadoop开发热潮中,人们认为所有数据,包括分析和事务工作负载,都可以合并到一个平台中。

    由于种种原因,这个想法从未真正实现。最大的挑战是不同的数据类型有不同的存储需求。关系数据库、图形数据库、时间序列数据库、HDF和对象存储都有各自的优缺点。如果开发人员将他们所有的数据塞入一个适合他们所有数据的数据湖,他们将不能最大化他们的优势。

    3、流媒体分析突破之年

    组织处理新数据越快,业务增长越好。这是实时或流分析背后的驱动力。但是对组织来说,这样做的挑战一直是非常困难和昂贵的,但是随着组织的分析团队的成熟和技术的改进,这种情况会发生变化。

    NewSQL数据库、内存中的数据网格和专用的流分析平台围绕着需要超快处理输入数据的通用功能进行融合,通常使用机器学习模型来自动化决策。

    关于大数据发展趋势是什么,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

    四、浅述大数据技术的发展历程与未来发展趋势

    大数据技术的发展历程与未来发展趋势:

    从文明之初的“结绳记事”,到文字发明后的“文以载道”,再到近现代科学的“数据建模”,数据一直伴随着人类社会的发展变迁,承载了人类基于数据和信息认识世界的努力和取得的巨大进步。

    然而,直到以电子计算机为代表的现代信息技术出现后,为数据处理提供了自动的方法和手段,人类掌握数据、处理数据的能力才实现了质的跃升。信息技术及其在经济社会发展方方面面的应用(即信息化),推动数据(信息)成为继物质、能源之后的又一种重要战略资源。

    大数据于2012、2013年达到其宣传高潮,2014年后概念体系逐渐成形,对其认知亦趋于理性。大数据相关技术、产品、应用和标准不断发展,逐渐形成了包括数据资源与API、开源平台与工具、数据基础设施、数据分析、数据应用等板块构成的大数据生态系统,并持续发展和不断完善,其发展热点呈现了从技术向应用、再向治理的逐渐迁移。

    大数据技术的发展趋势有哪些(大数据技术的发展趋势有哪些)

    经过多年来的发展和沉淀,人们对大数据已经形成基本共识是大数据现象源于互联网及其延伸所带来的无处不在的信息技术应用以及信息技术的不断低成本化。大数据泛指无法在可容忍的时间内用传统信息技术和软硬件工具对其进行获取、管理和处理的巨量数据集合,具有海量性、多样性、时效性及可变性等特征,需要可伸缩的计算体系结构以支持其存储、处理和分析。

    以上就是关于大数据技术的发展趋势有哪些相关问题的回答。希望能帮到你,如有更多相关问题,您也可以联系我们的客服进行咨询,客服也会为您讲解更多精彩的知识和内容。


    推荐阅读:

    中国大数据平台官网(中国大数据平台官网下载)

    杭州最大数码城在哪里(杭州最大数码城在哪里建)

    谷歌大数据三篇论文(谷歌大数据三篇论文标题)

    买家如何发买家秀(买家怎么发买家秀)

    提升进店客流的方法(提升进店客流的方法有哪些)