求算法的时间复杂度(求算法的时间复杂度的题目和解析)
大家好!今天让创意岭的小编来大家介绍下关于求算法的时间复杂度的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。
开始之前先推荐一个非常厉害的Ai人工智能工具,一键生成原创文章、方案、文案、工作计划、工作报告、论文、代码、作文、做题和对话答疑等等
只需要输入关键词,就能返回你想要的内容,越精准,写出的就越详细,有微信小程序端、在线网页版、PC客户端
创意岭作为行业内优秀的企业,服务客户遍布全球各地,如需了解SEO相关业务请拨打电话175-8598-2043,或添加微信:1454722008
本文目录:
一、什么是算法的时间复杂度?
算法的时间复杂度是一个函数,它定性描述该算法的运行时间。
这是一个代表算法输入值的字符串的长度的函数。时间复杂度常用大O符号表述,不包括这个函数的低阶项和首项系数。使用这种方式时,时间复杂度可被称为是渐近的,亦即考察输入值大小趋近无穷时的情况。
算法的时间复杂度取决于什么
算法的时间复杂度取决于待处理数据的状态以及问题的规模。算法中的指令描述的是一个计算,当其运行时能从一个初始状态和(可能为空的)初始输入开始,经过一系列有限而清晰定义的状态,最终产生输出并停止于一个终态。一个状态到另一个状态的转移不一定是确定的。随机化算法在内的一些算法,包含了一些随机输入。
二、怎么求算法的时间复杂度?
for( i=1; i<=n; i++)
这个语句的时间复杂度也是n, i 的值分别为 1,2,3, ..., n
但是,一般算时间复杂度这几个都会近似地看成O(n),常数一般会忽略不计(除非很大的情况下)
三、请问算法的时间复杂度是怎么计算出来的?
首先假设任意一个简单运算的时间都是1,例如a=1;a++;a=a*b;这些运算的时间都是1.
那么例如
for(int i=0;i<n;++i)
{
for(int j=0;j<m;++j)
a++; //注意,这里计算一次的时间是1.
}
那么上面的这个例子的时间复杂度就是 m*n
再例如冒泡排序的时间复杂度是N*N;快排的时间复杂度是log(n)。
详细的情况,建议你看《算法导论》,里面有一章节,具体讲这个的。
四、时间复杂度怎么算例题
1.一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得T(n)/f(n)的极限值(当n趋近于无穷大时)为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n)),称O(f(n)) 为算法的渐进时间复杂度,简称时间复杂度。
2.在计算时间复杂度的时候,先找出算法的基本操作,然后根据相应的各语句确定它的执行次数,再找出 T(n) 的同数量级(它的同数量级有以下:1,log2n,n,n log2n ,n的平方,n的三次方,2的n次方,n!),找出后,f(n) = 该数量级,若 T(n)/f(n) 求极限可得到一常数c,则时间复杂度T(n) = O(f(n))
3.在pascal中比较容易理解,容易计算的方法是:看看有几重for循环,只有一重则时间复杂度为O(n),二重则为O(n^2),依此类推,如果有二分则为O(logn),二分例如快速幂、二分查找,如果一个for循环套一个二分,那么时间复杂度则为O(nlogn)。
以上就是关于求算法的时间复杂度相关问题的回答。希望能帮到你,如有更多相关问题,您也可以联系我们的客服进行咨询,客服也会为您讲解更多精彩的知识和内容。
推荐阅读: