逻辑回归属于分类算法吗(逻辑回归属于分类算法吗)
大家好!今天让创意岭的小编来大家介绍下关于逻辑回归属于分类算法吗的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。
开始之前先推荐一个非常厉害的Ai人工智能工具,一键生成原创文章、方案、文案、工作计划、工作报告、论文、代码、作文、做题和对话答疑等等
只需要输入关键词,就能返回你想要的内容,越精准,写出的就越详细,有微信小程序端、在线网页版、PC客户端
创意岭作为行业内优秀的企业,服务客户遍布全球各地,如需了解SEO相关业务请拨打电话175-8598-2043,或添加微信:1454722008
本文目录:
一、机器学习常见算法优缺点之逻辑回归
我们在学习机器学习的时候自然会涉及到很多算法,而这些算法都是能够帮助我们处理更多的问题。其中,逻辑回归是机器学习中一个常见的算法,在这篇文章中我们给大家介绍一下关于逻辑回归的优缺点,大家有兴趣的一定要好好阅读哟。
首先我们给大家介绍一下逻辑回归的相关知识,逻辑回归的英文就是Logistic Regression。一般来说,逻辑回归属于判别式模型,同时伴有很多模型正则化的方法,具体有L0, L1,L2,etc等等,当然我们没有必要像在用朴素贝叶斯那样担心我的特征是否相关。这种算法与决策树、SVM相比,我们还会得到一个不错的概率解释,当然,我们还可以轻松地利用新数据来更新模型,比如说使用在线梯度下降算法-online gradient descent。如果我们需要一个概率架构,比如说,简单地调节分类阈值,指明不确定性,或者是要获得置信区间,或者我们希望以后将更多的训练数据快速整合到模型中去,我们可以使用这个这个算法。
那么逻辑回归算法的优点是什么呢?其实逻辑回归的优点具体体现在5点,第一就是实现简单,广泛的应用于工业问题上。第二就是分类时计算量非常小,速度很快,存储资源低。第三就是便利的观测样本概率分数。第四就是对逻辑回归而言,多重共线性并不是问题,它可以结合L2正则化来解决该问题。第五就是计算代价不高,易于理解和实现。
当然,逻辑回归的缺点也是十分明显的,同样,具体体现在五点,第一就是当特征空间很大时,逻辑回归的性能不是很好。第二就是容易欠拟合,一般准确度不太高。第三就是不能很好地处理大量多类特征或变量。第四个缺点就是只能处理两分类问题,且必须线性可分。第五个缺点就是对于非线性特征,需要进行转换。
那么逻辑回归应用领域都有哪些呢?逻辑回归的应用领域还是比较广泛的,比如说逻辑回归可以用于二分类领域,可以得出概率值,适用于根据分类概率排名的领域,如搜索排名等、逻辑回归的扩展softmax可以应用于多分类领域,如手写字识别等。当然,在信用评估也有逻辑回归的使用,同时逻辑回归可以测量市场营销的成功度。当然,也可以预测某个产品的收益。最后一个功能比较有意思,那就是可以预定特定的某天是否会发生地震。
我们在这篇文章中给大家介绍了关于机器学习中逻辑回归算法的相关知识,从中我们具体为大家介绍了逻辑回归算法的优缺点以及应用领域。相信大家能够通过这篇文章能够更好的理解逻辑回归算法。
二、逻辑回归适用于什么样的分类问题
两种方法都是常见的分类算法,从目标函数来看,区别在于逻辑回归采用的是logistical loss,svm采用的是hinge loss.这两个损失函数的目的都是增加对分类影响较大的数据点的权重,减少与分类关系较小的数据点的权重.SVM的处理方法是只考虑
三、机器学习是大数据分布式存储技术吗
对人工智能、机器学习、深度学习、大数据,自然语言处理等的入门理解 转载
2021-01-06 14:54:36

skyline758 
码龄6年
关注
转自大佬:https://blog.csdn.net/leishao_csdn/article/details/82800500,其讲述非常详细,逻辑很强
1. 机器学习(内核思想即统计和归纳)
一般的机器学习模型至少考虑两个量:一个是因变量,也就是我们希望预测的结果。另一个是自变量,也就是用来预测是否迟到的量。
机器学习方法是计算机利用已有的数据(经验),得出了某种模型(迟到的规律),并利用此模型预测未来(是否迟到)的一种方法。
事实上,机器学习的一个主要目的就是把人类思考归纳经验的过程转化为计算机通过对数据的处理计算得出模型的过程。经过计算机得出的模型能够以近似于人的方式解决很多灵活复杂的问题。
“训练”产生“模型”,“模型”指导 “预测”。
1.1 机器学习应用范围
其实,机器学习跟模式识别,统计学习,数据挖掘,计算机视觉,语音识别,自然语言处理等领域有着很深的联系。
从范围上来说,机器学习跟模式识别,统计学习,数据挖掘是类似的,同时,机器学习与其他领域的处理技术的结合,形成了计算机视觉、语音识别、自然语言处理等交叉学科。因此,一般说数据挖掘时,可以等同于说机器学习。同时,我们平常所说的机器学习应用,应该是通用的,不仅仅局限在结构化数据,还有图像,音频等应用。
1.1.1模式识别
模式识别=机器学习。两者被视为同一个领域的两个方面,两者的主要区别在于前者是从工业界发展起来的概念,后者则主要源自计算机学科。
1.1.2 数据挖掘
数据挖掘=机器学习+数据库。数据挖掘仅仅是一种思考方式,大部分数据挖掘中的算法是机器学习的算法在数据库中的优化。
1.1.3 统计学习
统计学习近似等于机器学习。二者在某种程度上是有区别的:统计学习者重点关注的是统计模型的发展与优化,偏数学,而机器学习者更关注的是能够解决问题,偏实践,因此机器学习研究者会重点研究学习算法在计算机上执行的效率与准确性的提升。
1.1.4 计算机视觉
计算机视觉=图像处理+机器学习。计算机视觉相关的应用非常的多,例如百度识图、手写字符识别、车牌识别等等应用。
1.1.5 语音识别
语音识别=语音处理+机器学习。语音识别就是音频处理技术与机器学习的结合。语音识别技术一般不会单独使用,一般会结合自然语言处理的相关技术。目前的相关应用有苹果的语音助手siri等。
1.1.6 自然语言处理
自然语言处理=文本处理+机器学习。在自然语言处理技术中,大量使用了编译原理相关的技术,例如词法分析,语法分析等等,除此之外,在理解这个层面,则使用了语义理解,机器学习等技术。
1.2 机器学习经典算法
1.2.1 回归算法(分为线性回归+逻辑回归)
线性回归(数值问题,结果是数字):如何拟合出一条直线最佳匹配我所有的数据?一般使用“最小二乘法”来求解。假设我们拟合出的直线代表数据的真实值,而观测到的数据代表拥有误差的值。为了尽可能减小误差的影响,需要求解一条直线使所有误差的平方和最小。最小二乘法将最优问题转化为求函数极值问题。(对于求导求极值,这种做法并不适合计算机,可能求解不出来,也可能计算量太大)
计算机科学届专门有一门学科叫“数值计算”,专门用来提升计算机进行各类计算时的准确性和效率问题。例如,著名的“梯度下降”、“牛顿法”就是数值计算中的经典算法,也非常适合来处理求解函数极值的问题。梯度下降法是解决回归模型中最简单且有效的方法之一。
逻辑回归(分类算法,结果是离散分类):逻辑回归是一种与线性回归非常类似的算法,但是,从本质上讲,处理问题的类型不同。线性回归处理的是数值问题,也就是最后预测出的结果是数字,例如房价。而逻辑回归属于分类算法,也就是说,逻辑回归预测结果是离散的分类,例如判断这封邮件是否是垃圾邮件,以及用户是否会点击此广告等等。
四、用于数据挖掘的分类算法有哪些,各有何优劣
常见的机器学习分类算法就有,不常见的更是数不胜数,那么我们针对某个分类问题怎么来选择比较好的分类算法呢?下面介绍一些算法的优缺点:
1. 朴素贝叶斯
比较简单的算法,所需估计的参数很少,对缺失数据不太敏感。如果条件独立性假设成立,即各特征之间相互独立,朴素贝叶斯分类器将会比判别模型,如逻辑回归收敛得更快,因此只需要较少的训练数据。就算该假设不成立,朴素贝叶斯分类器在实践中仍然有着不俗的表现。如果你需要的是快速简单并且表现出色,这将是个不错的选择。其主要缺点现实生活中特征之间相互独立的条件比较难以实现。
2. 逻辑回归
模型训练时,正则化方法较多,而且你不必像在用朴素贝叶斯那样担心你的特征是否相关。与决策树与支持向量机相比,逻辑回归模型还会得到一个不错的概率解释,你甚至可以轻松地利用新数据来更新模型(使用在线梯度下降算法)。如果你需要一个概率架构(比如简单地调节分类阈值,指明不确定性,获得置信区间),或者你以后想将更多的训练数据快速整合到模型中去,逻辑回归是一个不错的选择。
3. 决策树
决策树的分类过程易于解释说明。它可以毫无压力地处理特征间的交互关系并且是非参数化的,因此你不必担心异常值或者数据是否线性可分。它的一个缺点就是不支持在线学习,于是在新样本到来后,决策树需要全部重建。另一个缺点是容易过拟合,但这也就是诸如随机森林(或提升树)之类的集成方法的切入点。另外,随机森林经常是多分类问题的赢家(通常比支持向量机好上那么一点),它快速并且可调,同时你无须担心要像支持向量机那样调一大堆参数,所以随机森林相当受欢迎。
4. 支持向量机
高准确率,为避免过拟合提供了很好的理论保证,而且就算数据在原特征空间线性不可分,只要给个合适的核函数,它就能运行得很好。在超高维的文本分类问题中特别受欢迎。可惜内存消耗大,难以解释,运行和调参也有些烦人,所以我认为随机森林要开始取而代之了。
但是,好的数据却要优于好的算法,设计优良特征比优良的算法好很多。假如你有一个超大数据集,那么无论你使用哪种算法可能对分类性能都没太大影响(此时就根据速度和易用性来进行抉择)。
如果你真心在乎准确率,你一定得尝试多种多样的分类器,并且通过交叉验证选择最优。
以上就是关于逻辑回归属于分类算法吗相关问题的回答。希望能帮到你,如有更多相关问题,您也可以联系我们的客服进行咨询,客服也会为您讲解更多精彩的知识和内容。
推荐阅读: