神经网络的数学基础(神经网络的数学基础实验)
大家好!今天让创意岭的小编来大家介绍下关于神经网络的数学基础的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。
开始之前先推荐一个非常厉害的Ai人工智能工具,一键生成原创文章、方案、文案、工作计划、工作报告、论文、代码、作文、做题和对话答疑等等
只需要输入关键词,就能返回你想要的内容,越精准,写出的就越详细,有微信小程序端、在线网页版、PC客户端
创意岭作为行业内优秀的企业,服务客户遍布全球各地,如需了解SEO相关业务请拨打电话175-8598-2043,或添加微信:1454722008
本文目录:
一、计算神经科学的简介
对脑和神经系统的研究源远流长。至18世纪末,人们认识到脑分为不同的部位,行使不同的功能。 1891年Cajal创立神经元学说,认为整个神经系统是由结构上相对独立的神经细胞构成。 在Cajal神经元学说的基础上,1906年Sherrington提出了神经元间突触的概念。 20世纪20年代Adrian提出神经动作电位。1943年McCulloch 和 Pitts提出了的 M-P 神经网络模型。 1949年Hebb提出了神经网络学习的规则。50年代Rosenblatt 提出了的感知机 (Perception) 模型。 八十年代以来, 神经计算研究取得了进展。Hopfield引入Lyapunov函数(叫做计算能量函数)给出了网络稳定判据, 它与VLSI有直接对应关系, 为神经计算机的研制奠定了基础。同时它还可用于联想记忆和优化计算, 开拓了神经网络用于计算机的新途径。甘利俊一(Amari)在神经网络的数学基础理论方面做了大量的研究, 包括统计神经动力学、神经场的动力学理论、联想记忆,特别在信息几何方面作出了一些奠基性的工作。 计算神经科学的研究力图体现人脑的如下基本特征:① 大脑皮层是一个广泛连接的巨型复杂系统; ② 人脑的计算是建立在大规模并行模拟处理的基础之上; ③ 人脑具有很强的客错性和联想能力, 善于概括、类比、推广; ④ 大脑功能受先天因素的制约, 但后天因素, 如经历、学习与训练等起着重要作用, 这表明人脑是有很强的自组织性与自适应性。 人类的很多智力活动并不是按逻辑推理方式进行的, 而是由训练形成的。
目前,对人脑是如何工作的了解仍然很肤浅,计算神经科学的研究还很不充分, 我们面临的是一充满未知的新领域,必须在基本原理和计算理论方面进行更深刻的探索。 通过对人脑神经系统的结构、信息加工、记忆和学习机制的分析研究,从人脑工作的机理上进行仿真, 提出智能科学的新思想、新方法。
计算神经科学的科学问题如下: 神经活动的基本过程:研究神经元离子通道及其调控、突触传递及其调控、神经元受体及信号转导、神经活动的同步机理。 单个神经元的计算模型:单个神经元是构成神经网络的基本单元,它由神经细胞体、树突和轴突构成,神经元之间通过突触连接 学习和记忆的神经机制:神经系统因活动和环境等因素的作用而在结构和功能上发生改变,这种改变是学习和记忆等高级脑功能的基础。研究产生这种可塑性、特别是神经突触的可塑性的机制以及学习规则。研究神经元回路信息编码及加工机理。 神经元和神经系统发育的分子机制:神经细胞在脑发育时由神经干细胞分化而来,以后经过迁移、长出突起、通过形成突触互相连接等过程逐步形成复杂精密的脑。研究调节神经干细胞分化、维持神经细胞存活、调节神经细胞迁移、突起生长和突触形成的神经营养因子,研究它们的作用和作用机理。 神经递质:研究神经递质的构成,神经递质的合成、维持、释放及与受体的相互作用。
二、人工智能需要什么基础?
需要扎实的数学基础。
为什么学习人工智能这么看重数学基础呢?
这个首先得从目前人工智能的本质说起,目前以神经网络为基础的深度学习体系,其实可以看做是一个线性代数矩阵模型,从微观上来说是微分方程。
人工智能的重点在于智能,而智能的最终体现应该是随机性,比如你永远不知道一个独立的智慧生命在下一秒会做什么事情。
数学是有解可计算的,智能是无解无法预测的,但智能的很多行为又是可以数学进行计算的,所以智能与数学之间应该是具有强关系但并非唯一相关。
这也是为什么国内外大多数研究所招实习生首先看重的就是数学能力。
学人工智能要求怎样的数学基础
“线性代数”、“概率论”、“优化论”这三门数学课程,前两门是建模,后一门是求解,是学习人工智能的基础。(你们要的我都有)
1.线性代数
线性代数是学习人工智能过程中必须掌握的知识。线性代数中我们最熟悉的就是联立方程式了,而线性代数的起源就是为了求解联立方程式。只是随着研究的深入,人们发现它还有更广阔的用途。
2.概率论
“概率统计”是统计学习中重要的基础课程,因为机器学习很多时候就是在处理事务的不确定性。
3.优化
模型建立起来后,如何求解这个模型属于优化的范畴。优化,就是在无法获得问题的解析解的时候,退而求其次找到一个最优解。当然,需要提前定义好什么是最优,就好像篮球比赛之前得先定义好比赛规则一样。
通常的做法是想办法构造一个损失函数,然后找到损失函数的最小值进行求解。
三、要学习模式识别、神经网络、遗传算法、蚁群算法等等人工智能算法需要哪些数学知识?
模式识别需要非常好的概率论,数理统计;另外会用到少量矩阵代数,随机过程和高数中的一些运算,当然是比较基础的;如果要深入的话恐怕需要学泛函,但是一般情况下不需要达到这种深度。神经网络,遗传算法等智能算法在模式识别有非常重要的应用,但是一般不需要学习计算机学科的人工智能,我们控制有一个交叉学科叫做智能控制是讲这些的,智能控制不需要什么基础,有中学数学的集合和对空间有一点点的了解就足够了,模糊数学的基础是包含在这门学科里的。
四、如何学习人工智能专业?
1、数学基础。数学基础知识蕴含着处理智能问题的基本思想与方法,也是理解复杂算法的必备要素。这一模块覆盖了人工智能必备的数学基础知识,包括线性代数、概率论、最优化方法等。
2、机器学习。机器学习的作用是从数据中习得学习算法,进而解决实际的应用问题,是人工智能的核心内容之一。这一模块覆盖了机器学习中的主要方法,包括线性回归、决策树、支持向量机、聚类等。
3、人工神经网络。作为机器学习的一个分支,神经网络将认知科学引入机器学习中,以模拟生物神经系统对真实世界的交互反应,并取得了良好的效果。这一模块覆盖了神经网络中的基本概念,包括多层神经网络、前馈与反向传播、自组织神经网络等。
4、深度学习。简而言之,深度学习就是包含多个中间层的神经网络,数据爆炸和计算力飙升推动了深度学习的崛起。这一模块覆盖了深度学习的概念与实现,包括深度前馈网络、深度学习中的正则化、自编码器等。
5、神经网络实例。在深度学习框架下,一些神经网络已经被用于各种应用场景,并取得了不俗的效果。这一模块覆盖了几种神经网络实例,包括深度信念网络、卷积神经网络、循环神经网络等。
6、深度学习之外的人工智能。深度学习既有优点也有局限,其他方向的人工智能研究正是有益的补充。这一模块覆盖了与深度学习无关的典型学习方法,包括概率图模型、集群智能、迁移学习、知识图谱等。
7、应用场景。除了代替人类执行重复性的劳动,在诸多实际问题的处理中,人工智能也提供了有意义的尝试。这一模块覆盖了人工智能技术在几类实际任务中的应用,包括计算机视觉、语音处理、对话系统等。
以上就是关于神经网络的数学基础相关问题的回答。希望能帮到你,如有更多相关问题,您也可以联系我们的客服进行咨询,客服也会为您讲解更多精彩的知识和内容。
推荐阅读: