HOME 首页
SERVICE 服务产品
XINMEITI 新媒体代运营
CASE 服务案例
NEWS 热点资讯
ABOUT 关于我们
CONTACT 联系我们
创意岭
让品牌有温度、有情感
专注品牌策划15年

    svm损失函数(svm损失函数hinge loss)

    发布时间:2023-04-21 17:15:42     稿源: 创意岭    阅读: 145        

    大家好!今天让创意岭的小编来大家介绍下关于svm损失函数的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。

    开始之前先推荐一个非常厉害的Ai人工智能工具,一键生成原创文章、方案、文案、工作计划、工作报告、论文、代码、作文、做题和对话答疑等等

    只需要输入关键词,就能返回你想要的内容,越精准,写出的就越详细,有微信小程序端、在线网页版、PC客户端

    官网:https://ai.de1919.com

    创意岭作为行业内优秀的企业,服务客户遍布全球各地,如需了解SEO相关业务请拨打电话175-8598-2043,或添加微信:1454722008

    本文目录:

    svm损失函数(svm损失函数hinge loss)

    一、什么是支持向量机,SVM与LR的区别?

    支持向量机为一个二分类模型,它的基本模型定义为特征空间上的间隔最大的线性分类器。而它的学习策略为最大化分类间隔,最终可转化为凸二次规划问题求解。

    LR是参数模型,SVM为非参数模型。LR采用的损失函数为logisticalloss,而SVM采用的是hingeloss。在学习分类器的时候,SVM只考虑与分类最相关的少数支持向量点。LR的模型相对简单,在进行大规模线性分类时比较方便。

    二、常见的损失函数

    MSE也称为L2 loss:

    随着预测与真实值的绝对误差的增加,均方差损失呈二次方增加。

    Huber Loss将L1和L2结合起来,也被称做smoothed L1 Loss。增加了一个需要额外设置的超参数 ,来控制L2和L1的连接位置。 在误差接近0的时候使用L2,使损失函数可导,梯度更加稳定;误差较大的时候用L1,可以降低outlier带来的巨大误差的影响。

    二分类中,通常使用Sigmoid函数将模型的输出压缩到(0, 1)区间。给定输入 ,模型判断为正类/负类的概率:

    合并成一个:

    取对数加负号之后,得到:

    N是所有样本的数量。

    图中曲线可以看出,当预测值越接近目标值损失越小,随着误差变差,损失呈现指数增长。

    真实值 现在是一个One-hot向量,Sigmoid换成了Softmax来把输出值压缩到(0, 1)之间,所有维度的输出和为1.

    Softmax公式:

    表示K个类别中的一个,k只在对应的类别上是1,其他时候是0。

    于是上式可以改写成:

    是样本 的目标类。

    分类问题中为什么不用MSE? 因为MSE假设了误差服从高斯分布,在分类任务下这个假设无法满足,因此效果会很差。

    第二个论点是从信息论的角度来分析的,是关于由KL散度的角度来推导Cross Entropy的过程( 原文 )

    是另一种二分类损失函数,适用于Maximum-margin的分类,SVM的损失函数就是hinge loss + L2正则化

    下图为,当y为正类的时候( ),不同的输出 对应的loss图

    当y为正类时,模型输出负值会有很大的惩罚。即使输出为正值在(0, 1)区间,也还是会有一个较小的惩罚。也就是只有置信度高的才会有零损失。使用hinge loss直觉上的理解是要找到一个决策边界,使得素有数据点被这个边界正确地,高置信度地被分类。

    同时hinge loss也反应了一点,对于那些已经可以被很好分类的样本,它不再对loss产生贡献,可以让模型花更多的energy去学习难以分类的样本。

    https://zhuanlan.zhihu.com/p/77686118

    三、损失函数与鲁棒性

    机器学习模型关于单个样本的预测值与真实值的差称为损失。损失越小,模型越好,如果预测值与真实值相等,就是没有损失。

    损失函数(Loss function)是用来估量模型的预测值 f(x) 与真实值 Y 的不一致程度,它是一个非负实值函数,通常用 L(Y,f(x)) 来表示。损失函数越小,模型的鲁棒性就越好。

    虽然损失函数可以让我们看到模型的优劣,并且为我们提供了优化的方向,但是我们必须知道没有任何一种损失函数适用于所有的模型。损失函数的选取依赖于参数的数量、异常值、机器学习算法、梯度下降的效率、导数求取的难易和预测的置信度等若干方面。

    由于机器学习的任务不同,损失函数一般分为分类和回归两类,回归会预测出一个数值结果,分类则会给出一个标签。

    0-1损失是指,预测值和目标值不相等为1,否则为0:

    感知机就是用的这种损失函数。但是由于相等这个条件太过严格,因此我们可以放宽条件,即满足 |Y−f(X)|<T时认为相等。

    逻辑回归的损失函数就是对数损失函数,在逻辑回归的推导中,它假设样本服从伯努利分布(0-1)分布,然后求得满足该分布的似然函数,接着用对数求极值。逻辑回归并没有求对数似然函数的最大值,而是把极大化当做一个思想,进而推导它的风险函数为最小化的负的似然函数。从损失函数的角度上,它就成为了对数损失函数。

    损失函数的标准形式:

    在极大似然估计中,通常都是先取对数再求导,再找极值点,这样做是方便计算极大似然估计。损失函数L(Y,P(Y|X))是指样本X在分类Y的情况下,使概率P(Y|X)达到最大值(利用已知的样本分布,找到最大概率导致这种分布的参数值)

    最小二乘法是线性回归的一种方法,它将回归的问题转化为了凸优化的问题。最小二乘法的基本原则是:最优拟合曲线应该使得所有点到回归直线的距离和最小。通常用欧几里得距离进行距离的度量。平方损失的损失函数为:

    AdaBoost就是以指数损失函数为损失函数的。

    指数损失函数的标准形式:

    Hinge损失函数用于最大间隔(maximum-margin)分类,其中最有代表性的就是支持向量机SVM。

    Hinge函数的标准形式:

    其中,t为目标值(-1或+1),y是分类器输出的预测值,并不直接是类标签。其含义为,当t和y的符号相同时(表示y预测正确)并且|y|≥1时,hinge loss为0;当t和y的符号相反时,Hinge损失函数随着y的增大线性增大。

    在支持向量机中,最初的SVM优化的函数如下:

    将约束项进行变形,则为:

    则损失函数可以进一步写为:

    因此,SVM的损失函数可以看做是L2正则化与Hinge loss之和。

    平均绝对误差(MAE)是一种常用的回归损失函数,它是目标值与预测值之差绝对值的和,表示了预测值的平均误差幅度,而不需要考虑误差的方向(注:平均偏差误差MBE则是考虑的方向的误差,是残差的和),范围是0到∞,其公式如下所示:

    均方误差(MSE)是回归损失函数中最常用的误差,它是预测值与目标值之间差值的平方和,其公式如下所示:

    下图是均方根误差值的曲线分布,其中最小值为预测值为目标值的位置。我们可以看到随着误差的增加损失函数增加的更为迅猛。

    Huber损失相比于平方损失来说对于异常值不敏感,但它同样保持了可微的特性。它基于绝对误差但在误差很小的时候变成了平方误差。我们可以使用超参数δ来调节这一误差的阈值。当δ趋向于0时它就退化成了MAE,而当δ趋向于无穷时则退化为了MSE,其表达式如下,是一个连续可微的分段函数:

    对于Huber损失来说,δ的选择十分重要,它决定了模型处理异常值的行为。当残差大于δ时使用L1损失,很小时则使用更为合适的L2损失来进行优化。

    Huber损失函数克服了MAE和MSE的缺点,不仅可以保持损失函数具有连续的导数,同时可以利用MSE梯度随误差减小的特性来得到更精确的最小值,也对异常值具有更好的鲁棒性。而Huber损失函数的良好表现得益于精心训练的超参数δ。

    Log-Cosh损失函数是一种比L2更为平滑的损失函数,利用双曲余弦来计算预测误差:

    它的优点在于对于很小的误差来说log(cosh(x))与(x**2)/2很相近,而对于很大的误差则与abs(x)-log2很相近。这意味着log cosh损失函数可以在拥有MSE优点的同时也不会受到异常值的太多影响。它拥有Huber的所有优点,并且在每一个点都是二次可导的。二次可导在很多机器学习模型中是十分必要的,例如使用牛顿法的XGBoost优化模型(Hessian矩阵)。

    在大多数真实世界的预测问题中,我们常常希望看到我们预测结果的不确定性。通过预测出一个取值区间而不是一个个具体的取值点,这对于具体业务流程中的决策至关重要。

    分位数损失函数在我们需要预测结果的取值区间时是一个特别有用的工具。通常情况下我们利用最小二乘回归来预测取值区间主要基于这样的假设:取值残差的方差是常数。但很多时候对于线性模型是不满足的。这时候就需要分位数损失函数和分位数回归来拯救回归模型了。它对于预测的区间十分敏感,即使在非均匀分布的残差下也能保持良好的性能。下面让我们用两个例子看看分位数损失在异方差数据下的回归表现。

    上图是两种不同的数据分布,其中左图是残差的方差为常数的情况,而右图则是残差的方差变化的情况。我们利用正常的最小二乘对上述两种情况进行了估计,其中橙色线为建模的结果。但是我们却无法得到取值的区间范围,这时候就需要分位数损失函数来提供。

    上图中上下两条虚线基于0.05和0.95的分位数损失得到的取值区间,从图中可以清晰地看到建模后预测值得取值范围。

    分位数回归的目标在于估计给定预测值的条件分位数。实际上分位数回归就是平均绝对误差的一种拓展。分位数值得选择在于我们是否希望让正的或者负的误差发挥更大的价值。损失函数会基于分位数γ对过拟合和欠拟合的施加不同的惩罚。例如选取γ为0.25时意味着将要惩罚更多的过拟合而尽量保持稍小于中值的预测值。

    γ的取值通常在0-1之间,图中描述了不同分位数下的损失函数情况,明显可以看到对于正负误差不平衡的状态。

    参考文章:

    https://www.jianshu.com/p/b715888f079b

    http://baijiahao.baidu.com/s?id=1603857666277651546&wfr=spider&for=pc

    https://blog.csdn.net/weixin_37933986/article/details/68488339

    四、常见损失函数用法

    损失函数(loss function)又叫做代价函数(cost function),是用来评估模型的预测值与真实值不一致的程度,也是神经网络中优化的目标函数,神经网络训练或者优化的过程就是最小化损失函数的过程,损失函数越小,说明模型的预测值就越接近真是值,模型的健壮性也就越好。

    常见的损失函数有以下几种:

    0-1损失函数是最为简单的一种损失函数,多适用于分类问题中,如果预测值与目标值不相等,说明预测错误,输出值为1;如果预测值与目标值相同,说明预测正确,输出为0,言外之意没有损失。其数学公式可表示为:

    由于0-1损失函数过于理想化、严格化,且数学性质不是很好,难以优化,所以在实际问题中,我们经常会用以下的损失函数进行代替。

    感知损失函数是对0-1损失函数的改进,它并不会像0-1损失函数那样严格,哪怕预测值为0.99,真实值为1,都会认为是错误的;而是给一个误差区间,只要在误差区间内,就认为是正确的。其数学公式可表示为:

    顾名思义,平方损失函数是指预测值与真实值差值的平方。损失越大,说明预测值与真实值的差值越大。平方损失函数多用于线性回归任务中,其数学公式为:

    接下来,我们延伸到样本个数为N的情况,此时的平方损失函数为:

    Hinge损失函数通常适用于二分类的场景中,可以用来解决间隔最大化的问题,常应用于著名的SVM算法中。其数学公式为:

    其中在上式中,t是目标值{-1,+1},y为预测值的输出,取值范围在(-1,1)之间。

    对数损失函数也是常见的一种损失函数,常用于逻辑回归问题中,其标准形式为:

    上式中,y为已知分类的类别,x为样本值,我们需要让概率p(y|x)达到最大值,也就是说我们要求一个参数值,使得输出的目前这组数据的概率值最大。因为概率P(Y|X)的取值范围为[0,1],log(x)函数在区间[0,1]的取值为负数,所以为了保证损失值为正数要在log函数前加负号。

    交叉熵损失函数本质上也是一种对数损失函数,常用于多分类问题中。其数学公式为:

    注意:公式中的x表示样本,y代表预测的输出,a为实际输出,n表示样本总数量。交叉熵损失函数常用于当sigmoid函数作为激活函数的情景,因为它可以完美解决平方损失函数权重更新过慢的问题。

    原文参见 https://www.toutiao.com/a6585133695361876487/

    以上就是关于svm损失函数相关问题的回答。希望能帮到你,如有更多相关问题,您也可以联系我们的客服进行咨询,客服也会为您讲解更多精彩的知识和内容。


    推荐阅读:

    svip的全称是什么(svip的全称是什么英文)

    百度网盘svip共享账号(百度云超级会员试用1天)

    pd.readcsv参数(pd.read_csv参数)

    怎么用通道扣图(怎么用通道抠图)

    学机器人编程有用吗(编程和机器人课有什么区别)