大数据的研究背景(大数据的研究背景怎么写)
大家好!今天让创意岭的小编来大家介绍下关于大数据的研究背景的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。
开始之前先推荐一个非常厉害的Ai人工智能工具,一键生成原创文章、方案、文案、工作计划、工作报告、论文、代码、作文、做题和对话答疑等等
只需要输入关键词,就能返回你想要的内容,越精准,写出的就越详细,有微信小程序端、在线网页版、PC客户端
创意岭作为行业内优秀的企业,服务客户遍布全球各地,如需了解SEO相关业务请拨打电话175-8598-2043,或添加微信:1454722008
本文目录:
一、如何认识大数据背景下,统计学面临的挑战与机遇
1.大数据对统计学带来的挑战
传统的统计学一般还停留在用抽样技术在总体中抽取样本收集数据,然后建立模型对数据进行统计分析。但是在数据如此之多的今天传统的统计学在完成这方面时面临巨大的挑战。统计学要想推陈出新,必须要自己作出改革。
2.大数据为统计学带来的机遇
统计学从古至今一直以来就是一门研究数据的学科,统计学和大数据内在具有联系性,大数据让统计学登上了学科霸主的地位,很多教学单位现在都注重统计学人才的培养。统计学能够让人们更好的把握对数据的分析和应用。总结了以下几点大数据时代为统计学带来的发展机遇。
(1)大数据为统计学提供了新的研究方向,对大数据进行分析,为统计学提供了新的实用价值,因为不仅电商,传统商家还有政府都需要对庞杂的数据进行分析,找出其中包含的关于经济发展趋势的宏观信息,微观信息,还有公众的喜好和需求等等,为了获取这些信息,更加严密和系统的科学方法会被引入统计学研究中。
(2)统计学能够充分利用计算机技术的发展,统计理论方法需要在学科交叉中获得新的生命力,统计学应该从数据发展的现在趋势中寻找统计发展的灵感。考虑到现在的信息技术、云计算、互联网的发展,并且以政府统计作为现代化统计的基础,从传统的统计学向现代统计学发展。
(3)对统计人才的培养提出了新的要求,现在需要的不仅仅是对统计学理论知识有清晰认识的统计学人才,而是高层次的数据分析师,要有数学知识、统计建模知识、计算机技能、编程技能、大数据挖掘、还要有管理技能等的复合型人才。
(4)可以进一步深化统计理论模型,现在进行统计分析不像以往,统计指标的获得要经过复杂的演算过程。现在一般都是依靠大型软件程序,但是这些大型的软
件程序的编制却需要特定的统计模型来完成的,如果想要在大数据时代获得发展的优先权,就要研发出相应的数理统计的模型。
二、大学选专业 软件工程 (大数据技术方向 )怎么样
大学选专业 软件工程 (大数据技术方向 )怎么样
这个专业学好以后找工作肯定好,但问题是国内很多大学在软件课程上抓的不严,学生真正打代码的好少。我之前在武汉理工大学读了两年,都没打过代码(武汉理工本科教学落实不好啊)。现在在美国普渡大学每天都打代码到凌晨。确实感觉和代码相关的专业真心要多练才好。我有个国内的同学现在在北邮读研究生,做的是数据挖掘方向,听说这个现在挺火的,找工作都很好,而且北邮抓的很严,那个同学也是每天都面对这计算机打代码。
所以说,结论一条,入了这个专业,如果你确实在天天打代码,相信你以后不愁好工作。
大学选专业虚拟现实、大数据、软件工程、网络安全哪个前景比较好?
各有各的好,我更偏向于虚拟现实。因为这个区域目前市场较为空旷。发展的潜力更大
湖北师范大学软件工程(企业级应用技术方向)专业怎么样?
软件工程专业(企业级应用技术方向)一直以来都是很好的专业。计算机科学与技术学院的专业核心课程包括:Java程序设计(基础 高级)、基于Java技术的Web应用开发、数据库设计与应用、网页界面设计、软件工程与配置管理、网络数据传输与解析。
大数据隐私保护密码技术属于软件工程吗
你好!大数据隐私保护密码技术,属于软件工程,也属于密码学范畴。
大数据是一种蕴含大量信息、具有极高价值的数据集合,为了避免大数据挖掘泄露用户的隐私,必须要对大数据进行必要的保护.由于大数据具有总量庞大、结构复杂、处理迅速等特点,传统的保护数据隐私的技术很多都不再适用。
从密码学的角度,综述了近年来提出的、适用于大数据的隐私保护技术的研究进展,针对大数据的存储、搜索和计算这3个重要方面,分别阐述了大数据隐私保护的研究背景和主要研究方向,并具体介绍了相关技术的最新研究进展,最后指出未来大数据隐私保护研究的一些重要方向。
大学软件工程专业要分大数据和互联网2个方向 大数据和互联网应该选哪个啊? 哪个毕业后容易找工作?
其实对于这两个专业都只是笼统的讲一些理论上的知识,对于实际操作来说都要应用的操作系统、数据库等一套完整的体系。
所以你学哪个专业对你后期找工作都没有太大的影响,并且你后期的工作可能都不是软件工程或者互联网。
求解:大数据与软件工程的关系?
这个问题有意思:
现在处理大数据真是工程问题了,属于各种软件、业务领域、领域专家和业务流程的组合,因此要实现大数据的任何一个方面(存储、分析等)都是一个复杂的工程问题,而且一定是软件工程!
什么是大数据软件工程师
大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产
大数据工程师是根据大数据来的一种职业
大数据技术峰会 2015 怎么样
您好,很高兴为您解答,
您说的是《互联网+”时代大数据技术峰会(WOT2015)》这一场吗?
这场会议是2015年11月28-29日举办的,会议地点在深圳前海华侨城JW万豪酒店。
这场会议参与嘉宾都来自国内外知名企业的相关负责人或者创业者,如下:
梁宇凌
Google/高级Android架构师
朱桦
金山云合伙人
孔德亮
360云事业部总监
李柯辰
Flyme互联网研发总监
刘尚堃
京东/技术总监
曲毅
乐蜂网 技术总监
程显峰
OneAPM COO
等等,在这里不一一列举,详情可以上活动家看一下。
总的来说还是非常权威正规的一场商务会议,含金量很高。
另外祝您参会顺利,并能通过会议获取到自己想要的东西。
求简述大数据与软件工程的关系
大数据是随着互联网的普及应运而生的,大数据和云是分不开的,数据存储,数据的分类,数据挖掘,数据的分析,如何把一堆在硬盘,内存,服务器中存储的数据通过分析,处理,转换成能够为我们带来实际利益的东西,或者说实际能有用处的东西,就是大数据的解决问题。其实云现在在中过是个双刃剑(不说了,硬伤。。。无耐),大数据也因此受到了限制,不过云时代和大数据的到来是早晚的问题,而且近两年是有相当的趋势的,那么大数据对软件工程的影像无非就是方展方向上面和数据的安全问题,怎样防止数据的丢失被盗,IT技术又是如何对大数据进行存储和解析处理,都是当前软件工程的热门和必然的趋势,做好数据分析,数据挖掘,以后真的是不用发愁钱的问题
上海应用技术大学的软件工程专业怎么样
软件工程专业是2002年国家教育部新增专业,随着计算机应用领域的不断扩大及中国经济建设的不断发展,软件工程专业将成为一个新的热门专业。软件工程专业以计算机科学与技术学科为基础,强调软件开发的工程性,使学生在掌握计算机科学与技术方面知识和技能的基础上熟练掌握从事软件需求分析、软件设计、软件测试、软件维护和软件项目管理等工作所必需的基础知识、基本方法和基本技能,突出对学生专业知识和专业技能的培养,培养能够从事软件开发、测试、维护和软件项目管理的高级专门人才。
三、大数据行业发展现状与未来前景分析
近年来,全球正大步迈向大数据新时代,数据的高效存储、处理和分析等需求也越来越旺盛。在此背景下,行业大数据得以高速发展,应用于各个领域,根据IDC发布的有关数据预测,2025年市场规模将达到19508亿元的高点。
全球大数据储量呈爆发式增长
随着信息通信技术的发展,各行各业信息系统采集、处理和积累的数据量越来越多,全球大数据储量呈爆炸式增长。根据国际数据公司(IDC)的监测数据显示,2013年全球大数据储量为4.3ZB(相当于47.24亿个1TB容量的移动硬盘),2014年和2015年全球大数据储量分别为6.6ZB和8.6ZB。近几年全球大数据储量的增速每年都保持在40%,2016年甚至达到了87.21%的增长率。2016年和2017年全球大数据储量分别为16.1ZB和21.6ZB,2018年全球大数据储量达到33.0ZB,2019年全球大数据储量达到41ZB。
中国的数据产生量约占全球数据产生量的23%
根据IDC最新发布的统计数据,中国的数据产生量约占全球数据产生量的23%,美国的数据产生量占比约为21%,EMEA(欧洲、中东、非洲)的数据产生量占比约为30%,APJxC(日本和亚太)数据产生量占比约为18%,全球其他地区数据产生量占比约为8%。
我国大数据行业市场规模增速连续四年保持在20%以上
随着互联网技术的快速发展,我国大数据产业也发展迅速。中国信息通信研究院结合对大数据相关企业的调研测算,发现我国大数据产业规模稳步增长。2016-2019年,短短四年时间,我国大数据产业市场规模由2840.8亿元增长到5386.2亿元,增速连续四年保持在20%以上。
2020年应用市场数据规模市场份额将达到40%
随着大数据相关产品及应用的不断普及,未来五年,应用层规模将逐步增长。在技术层、数据源层以及衍生层的共同支撑下,应用市场规模份额将达到40%。其中,交易市场规模虽然占比最少,但是正是由于他的存在,使得数据的交易从法律上实现数据的合法化问题,以及实现了数据价值兑现。
预计2025年中国大数据产业规模将达19508亿元的高点
当前,我国正在加速从数据大国向着数据强国迈进。随着中国物联网等新技术的持续推进,到2025年,其产生的数据将超过美国。数据的快速产生和各项配套政策的落实推动我国大数据行业高速发展,预计未来我国行业大数据市场规模增速将维持在15%-25%之间,到2025年中国大数据产业规模将达19508亿元的高点。
—— 以上数据及分析均来自于前瞻产业研究院《中国行业大数据市场发展前景预测与投资战略规划分析报告》。
四、浅谈计算机与大数据的相关论文
在大数据环境下,计算机信息处理技术也面临新的挑战,要求计算机信息处理技术必须不断的更新发展,以能够对当前的计算机信息处理需求满足。下面是我给大家推荐的计算机与大数据的相关论文,希望大家喜欢!
计算机与大数据的相关论文篇一
浅谈“大数据”时代的计算机信息处理技术
[摘 要]在大数据环境下,计算机信息处理技术也面临新的挑战,要求计算机信息处理技术必须不断的更新发展,以能够对当前的计算机信息处理需求满足。本文重点分析大数据时代的计算机信息处理技术。
[关键词]大数据时代;计算机;信息处理技术
在科学技术迅速发展的当前,大数据时代已经到来,大数据时代已经占领了整个环境,它对计算机的信息处理技术产生了很大的影响。计算机在短短的几年内,从稀少到普及,使人们的生活有了翻天覆地的变化,计算机的快速发展和应用使人们走进了大数据时代,这就要求对计算机信息处理技术应用时,则也就需要在之前基础上对技术实施创新,优化结构处理,从而让计算机数据更符合当前时代发展。
一、大数据时代信息及其传播特点
自从“大数据”时代的到来,人们的信息接收量有明显加大,在信息传播中也出现传播速度快、数据量大以及多样化等特点。其中数据量大是目前信息最显著的特点,随着时间的不断变化计算机信息处理量也有显著加大,只能够用海量还对当前信息数量之大形容;传播速度快也是当前信息的主要特点,计算机在信息传播中传播途径相当广泛,传播速度也相当惊人,1s内可以完成整个信息传播任务,具有较高传播效率。在传播信息过程中,还需要实施一定的信息处理,在此过程中则需要应用相应的信息处理工具,实现对信息的专门处理,随着目前信息处理任务的不断加强,信息处理工具也有不断的进行创新[1];信息多样化,则也就是目前数据具有多种类型,在庞大的数据库中,信息以不同的类型存在着,其中包括有文字、图片、视频等等。这些信息类型的格式也在不断发生着变化,从而进一步提高了计算机信息处理难度。目前计算机的处理能力、打印能力等各项能力均有显著提升,尤其是当前软件技术的迅速发展,进一步提高了计算机应用便利性。微电子技术的发展促进了微型计算机的应用发展,进一步强化了计算机应用管理条件。
大数据信息不但具有较大容量,同时相对于传统数据来讲进一步增强了信息间关联性,同时关联结构也越来越复杂,导致在进行信息处理中需要面临新的难度。在 网络技术 发展中重点集中在传输结构发展上,在这种情况下计算机必须要首先实现网络传输结构的开放性设定,从而打破之前计算机信息处理中,硬件所具有的限制作用。因为在当前计算机网络发展中还存在一定的不足,在完成云计算机网络构建之后,才能够在信息处理过程中,真正的实现收放自如[2]。
二、大数据时代的计算机信息处理技术
(一)数据收集和传播技术
现在人们通过电脑也就可以接收到不同的信息类型,但是在进行信息发布之前,工作人员必须要根据需要采用信息处理技术实施相应的信息处理。计算机采用信息处理技术实施信息处理,此过程具有一定复杂性,首先需要进行数据收集,在将相关有效信息收集之后首先对这些信息实施初步分析,完成信息的初级操作处理,总体上来说信息处理主要包括:分类、分析以及整理。只有将这三步操作全部都完成之后,才能够把这些信息完整的在计算机网络上进行传播,让用户依照自己的实际需求筛选满足自己需求的信息,借助于计算机传播特点将信息数据的阅读价值有效的实现。
(二)信息存储技术
在目前计算机网络中出现了很多视频和虚拟网页等内容,随着人们信息接收量的不断加大,对信息储存空间也有较大需求,这也就是对计算机信息存储技术提供了一个新的要求。在数据存储过程中,已经出现一系列存储空间无法满足当前存储要求,因此必须要对当前计算机存储技术实施创新发展。一般来讲计算机数据存储空间可以对当前用户关于不同信息的存储需求满足,但是也有一部分用户对于计算机存储具有较高要求,在这种情况下也就必须要提高计算机数据存储性能[3],从而为计算机存储效率提供有效保障。因此可以在大数据存储特点上完成计算机信息新存储方式,不但可以有效的满足用户信息存储需求,同时还可以有效的保障普通储存空间不会出现被大数据消耗问题。
(三)信息安全技术
大量数据信息在计算机技术发展过程中的出现,导致有一部分信息内容已经出现和之前信息形式的偏移,构建出一些新的计算机信息关联结构,同时具有非常强大的数据关联性,从而也就导致在计算机信息处理中出现了新的问题,一旦在信息处理过程中某个信息出现问题,也就会导致与之关联紧密的数据出现问题。在实施相应的计算机信息管理的时候,也不像之前一样直接在单一数据信息之上建立,必须要实现整个数据库中所有将数据的统一安全管理。从一些角度分析,这种模式可以对计算机信息处理技术水平有显著提升,并且也为计算机信息处理技术发展指明了方向,但是因为在计算机硬件中存在一定的性能不足,也就导致在大数据信息安全管理中具有一定难度。想要为数据安全提供有效保障,就必须要注重数据安全技术管理技术的发展。加强当前信息安全体系建设,另外也必须要对计算机信息管理人员专业水平进行培养,提高管理人员专业素质和专业能力,从而更好的满足当前网络信息管理体系发展需求,同时也要加强关于安全技术的全面深入研究工作[4]。目前在大数据时代下计算机信息安全管理技术发展还不够成熟,对于大量的信息还不能够实施全面的安全性检测,因此在未来计算机信息技术研究中安全管理属于重点方向。但是因为目前还没有构建完善的计算机安全信息管理体系,因此首先应该强化关于计算机重点信息的安全管理,这些信息一旦发生泄漏,就有可能会导致出现非常严重的损失。目前来看,这种 方法 具有一定可行性。
(四)信息加工、传输技术
在实施计算机信息数据处理和传输过程中,首先需要完成数据采集,同时还要实时监控数据信息源,在数据库中将采集来的各种信息数据进行存储,所有数据信息的第一步均是完成采集。其次才能够对这些采集来的信息进行加工处理,通常来说也就是各种分类及加工。最后把已经处理好的信息,通过数据传送系统完整的传输到客户端,为用户阅读提供便利。
结语:
在大数据时代下,计算机信息处理技术也存在一定的发展难度,从目前专业方面来看,还存在一些问题无法解决,但是这些难题均蕴含着信息技术发展的重要机遇。在当前计算机硬件中,想要完成计算机更新也存在一定的难度,但是目前计算机未来的发展方向依旧是云计算网络,把网络数据和计算机硬件数据两者分开,也就有助于实现云计算机网络的有效转化。随着科学技术的不断发展相信在未来的某一天定能够进入到计算机信息处理的高速发展阶段。
参考文献
[1] 冯潇婧.“大数据”时代背景下计算机信息处理技术的分析[J].计算机光盘软件与应用,2014,(05):105+107.
[2] 詹少强.基于“大数据”时代剖析计算机信息处理技术[J].网络安全技术与应用,2014,(08):49-50.
[3] 曹婷.在信息网络下计算机信息处理技术的安全性[J].民营科技,2014, (12):89CNKI
[4] 申鹏.“大数据”时代的计算机信息处理技术初探[J].计算机光盘软件与应用,2014,(21):109-110
计算机与大数据的相关论文篇二
试谈计算机软件技术在大数据时代的应用
摘要:大数据的爆炸式增长在大容量、多样性和高增速方面,全面考验着现代企业的数据处理和分析能力;同时,也为企业带来了获取更丰富、更深入和更准确地洞察市场行为的大量机会。对企业而言,能够从大数据中获得全新价值的消息是令人振奋的。然而,如何从大数据中发掘出“真金白银”则是一个现实的挑战。这就要求采用一套全新的、对企业决策具有深远影响的解决方案。
关键词:计算机 大数据时代 容量 准确 价值 影响 方案
1 概述
自从计算机出现以后,传统的计算工作已经逐步被淘汰出去,为了在新的竞争与挑战中取得胜利,许多网络公司开始致力于数据存储与数据库的研究,为互联网用户提供各种服务。随着云时代的来临,大数据已经开始被人们广泛关注。一般来讲,大数据指的是这样的一种现象:互联网在不断运营过程中逐步壮大,产生的数据越来越多,甚至已经达到了10亿T。大数据时代的到来给计算机信息处理技术带来了更多的机遇和挑战,随着科技的发展,计算机信息处理技术一定会越来越完善,为我们提供更大的方便。
大数据是IT行业在云计算和物联网之后的又一次技术变革,在企业的管理、国家的治理和人们的生活方式等领域都造成了巨大的影响。大数据将网民与消费的界限和企业之间的界限变得模糊,在这里,数据才是最核心的资产,对于企业的运营模式、组织结构以及 文化 塑造中起着很大的作用。所有的企业在大数据时代都将面对战略、组织、文化、公共关系和人才培养等许多方面的挑战,但是也会迎来很大的机遇,因为只是作为一种共享的公共网络资源,其层次化和商业化不但会为其自身发展带来新的契机,而且良好的服务品质更会让其充分具有独创性和专用性的鲜明特点。所以,知识层次化和商业化势必会开启知识创造的崭新时代。可见,这是一个竞争与机遇并存的时代。
2 大数据时代的数据整合应用
自从2013年,大数据应用带来令人瞩目的成绩,不仅国内外的产业界与科技界,还有各国政府部门都在积极布局、制定战略规划。更多的机构和企业都准备好了迎接大数据时代的到来,大数据的内涵应是数据的资产化和服务化,而挖掘数据的内在价值是研究大数据技术的最终目标。在应用数据快速增长的背景下,为了降低成本获得更好的能效,越来越趋向专用化的系统架构和数据处理技术逐渐摆脱传统的通用技术体系。如何解决“通用”和“专用”体系和技术的取舍,以及如何解决数据资产化和价值挖掘问题。
企业数据的应用内容涵盖数据获取与清理、传输、存储、计算、挖掘、展现、开发平台与应用市场等方面,覆盖了数据生产的全生命周期。除了Hadoop版本2.0系统YARN,以及Spark等新型系统架构介绍外,还将探讨研究流式计算(Storm,Samza,Puma,S4等)、实时计算(Dremel,Impala,Drill)、图计算(Pregel,Hama,Graphlab)、NoSQL、NewSQL和BigSQL等的最新进展。在大数据时代,借力计算机智能(MI)技术,通过更透明、更可用的数据,企业可以释放更多蕴含在数据中的价值。实时、有效的一线质量数据可以更好地帮助企业提高产品品质、降低生产成本。企业领导者也可根据真实可靠的数据制订正确战略经营决策,让企业真正实现高度的计算机智能决策办公,下面我们从通信和商业运营两个方面进行阐述。
2.1 通信行业:XO Communications通过使用IBM SPSS预测分析软件,减少了将近一半的客户流失率。XO现在可以预测客户的行为,发现行为趋势,并找出存在缺陷的环节,从而帮助公司及时采取 措施 ,保留客户。此外,IBM新的Netezza网络分析加速器,将通过提供单个端到端网络、服务、客户分析视图的可扩展平台,帮助通信企业制定更科学、合理决策。电信业者透过数以千万计的客户资料,能分析出多种使用者行为和趋势,卖给需要的企业,这是全新的资料经济。中国移动通过大数据分析,对 企业运营 的全业务进行针对性的监控、预警、跟踪。系统在第一时间自动捕捉市场变化,再以最快捷的方式推送给指定负责人,使他在最短时间内获知市场行情。
2.2 商业运营:辛辛那提动物园使用了Cognos,为iPad提供了单一视图查看管理即时访问的游客和商务信息的服务。借此,动物园可以获得新的收入来源和提高营收,并根据这些信息及时调整营销政策。数据收集和分析工具能够帮助银行设立最佳网点,确定最好的网点位置,帮助这个银行更好地运作业务,推动业务的成长。
3 企业信息解决方案在大数据时代的应用
企业信息管理软件广泛应用于解决欺诈侦测、雇员流动、客户获取与维持、网络销售、市场细分、风险分析、亲和性分析、客户满意度、破产预测和投资组合分析等多样化问题。根据大数据时代的企业挖掘的特征,提出了数据挖掘的SEMMA方法论――在SAS/EM环境中,数据挖掘过程被划分为Sample、Explore、Modify、Model、Assess这五个阶段,简记为SEMMA:
3.1 Sample 抽取一些代表性的样本数据集(通常为训练集、验证集和测试集)。样本容量的选择标准为:包含足够的重要信息,同时也要便于分析操作。该步骤涉及的处理工具为:数据导入、合并、粘贴、过滤以及统计抽样方法。
3.2 Explore 通过考察关联性、趋势性以及异常值的方式来探索数据,增进对于数据的认识。该步骤涉及的工具为:统计 报告 、视图探索、变量选择以及变量聚类等方法。
3.3 Modify 以模型选择为目标,通过创建、选择以及转换变量的方式来修改数据集。该步骤涉及工具为:变量转换、缺失处理、重新编码以及数据分箱等。
3.4 Model 为了获得可靠的预测结果,我们需要借助于分析工具来训练统计模型或者机器学习模型。该步骤涉及技术为:线性及逻辑回归、决策树、神经网络、偏最小二乘法、LARS及LASSO、K近邻法以及其他用户(包括非SAS用户)的模型算法。
3.5 Assess 评估数据挖掘结果的有效性和可靠性。涉及技术为:比较模型及计算新的拟合统计量、临界分析、决策支持、报告生成、评分代码管理等。数据挖掘者可能不会使用全部SEMMA分析步骤。然而,在获得满意结果之前,可能需要多次重复其中部分或者全部步骤。
在完成SEMMA步骤后,可将从优选模型中获取的评分公式应用于(可能不含目标变量的)新数据。将优选公式应用于新数据,这是大多数数据挖掘问题的目标。此外,先进的可视化工具使得用户能在多维直方图中快速、轻松地查阅大量数据并以图形化方式比较模拟结果。SAS/EM包括了一些非同寻常的工具,比如:能用来产生数据挖掘流程图的完整评分代码(SAS、C以及Java代码)的工具,以及交换式进行新数据评分计算和考察执行结果的工具。
如果您将优选模型注册进入SAS元数据服务器,便可以让SAS/EG和SAS/DI Studio的用户分享您的模型,从而将优选模型的评分代码整合进入 工作报告 和生产流程之中。SAS模型管理系统,通过提供了开发、测试和生产系列环境的项目管理结构,进一步补充了数据挖掘过程,实现了与SAS/EM的无缝联接。
在SAS/EM环境中,您可以从SEMMA工具栏上拖放节点进入工作区的工艺流程图中,这种流程图驱动着整个数据挖掘过程。SAS/EM的图形用户界面(GUI)是按照这样的思路来设计的:一方面,掌握少量统计知识的商务分析者可以浏览数据挖掘过程的技术方法;另一方面,具备数量分析技术的专家可以用微调方式深入探索每一个分析节点。
4 结束语
在近十年时间里,数据采集、存储和数据分析技术飞速发展,大大降低了数据储存和处理的成本,一个大数据时代逐渐展现在我们的面前。大数据革新性地将海量数据处理变为可能,并且大幅降低了成本,使得越来越多跨专业学科的人投入到大数据的开发应用中来。
参考文献:
[1]薛志文.浅析计算机网络技术及其发展趋势[J].信息与电脑,2009.
[2]张帆,朱国仲.计算机网络技术发展综述[J].光盘技术,2007.
[3]孙雅珍.计算机网络技术及其应用[J].东北水利水电,1994.
[4]史萍.计算机网络技术的发展及展望[J].五邑大学学报,1999.
[5]桑新民.步入信息时代的学习理论与实践[M].中央广播大学出版社,2000.
[6]张浩,郭灿.数据可视化技术应用趋势与分类研究[J].软件导刊.
[7]王丹.数字城市与城市地理信息产业化――机遇与挑战[J].遥感信息,2000(02).
[8]杨凤霞.浅析 Excel 2000对数据的安全管理[J].湖北商业高等专科学校学报,2001(01).
计算机与大数据的相关论文篇三
浅谈利用大数据推进计算机审计的策略
[摘要]社会发展以及时代更新,在该种环境背景下大数据风潮席卷全球,尤其是在进入新时期之后数据方面处理技术更加成熟,各领域行业对此也给予了较高的关注,针对当前计算机审计(英文简称CAT)而言要想加速其发展脚步并将其质量拔高就需要结合大数据,依托于大数据实现长足发展,本文基于此就大数据于CAT影响进行着手分析,之后探讨依托于大数据良好推进CAT,以期为后续关于CAT方面研究提供理论上参考依据。
[关键词]大数据 计算机审计 影响
前言:相较于网络时代而言大数据风潮一方面提供了共享化以及开放化、深层次性资源,另一方面也促使信息管理具备精准性以及高效性,走进新时期CAT应该融合于大数据风潮中,相应CAT人员也需要积极应对大数据带了的机遇和挑战,正面CAT工作,进而促使CAT紧跟时代脚步。
一、初探大数据于CAT影响
1.1影响之机遇
大数据于CAT影响体现在为CAT带来了较大发展机遇,具体来讲,信息技术的更新以及其质量的提升促使数据方面处理技术受到了众多领域行业的喜爱,当前在数据技术推广普及阶段中呈现三大变化趋势:其一是大众工作生活中涉及的数据开始由以往的样本数据实际转化为全数据。其二是全数据产生促使不同数据间具备复杂内部关系,而该种复杂关系从很大程度上也推动工作效率以及数据精准性日渐提升,尤其是数据间转化关系等更为清晰明了。其三是大众在当前处理数据环节中更加关注数据之间关系研究,相较于以往仅仅关注数据因果有了较大进步。基于上述三大变化趋势,也深刻的代表着大众对于数据处理的态度改变,尤其是在当下海量数据生成背景下,人工审计具备较强滞后性,只有依托于大数据并发挥其优势才能真正满足大众需求,而这也是大数据对CAT带来的重要发展机遇,更是促进CAT在新时期得以稳定发展重要手段。
1.2影响之挑战
大数据于CAT影响还体现在为CAT带来一定挑战,具体来讲,审计评估实际工作质量优劣依托于其中数据质量,数据具备的高质量则集中在可靠真实以及内容详细和相应信息准确三方面,而在CAT实际工作环节中常常由于外界环境以及人为因素导致数据质量较低,如数据方面人为随意修改删除等等,而这些均是大数据环境背景下需要严格把控的重点工作内容。
二、探析依托于大数据良好推进CAT措施
2.1数据质量的有效保障
依托于大数据良好推进CAT措施集中在数据质量有效保障上,对数据质量予以有效保障需要从两方面入手,其一是把控电子数据有效存储,简单来讲就是信息存储,对电子信息进行定期检查,监督数据实际传输,对信息系统予以有效确认以及评估和相应的测试等等,进而将不合理数据及时发现并找出信息系统不可靠不准确地方;其二是把控电子数据采集,通常电子数据具备多样化采集方式,如将审计单位相应数据库直接连接采集库进而实现数据采集,该种直接采集需要备份初始传输数据,避免数据采集之后相关人员随意修改,更加可以与审计单位进行数据采集真实性 承诺书 签订等等,最终通过电子数据方面采集以及存储两大内容把控促使数据质量更高,从而推动CAT发展。
2.2公共数据平台的建立
依托于大数据良好推进CAT措施还集中在公共数据平台的建立,建立公共化分析平台一方面能够将所有采集的相关数据予以集中化管理存储,更能够予以多角度全方面有效分析;另一方面也能够推动CAT作业相关标准予以良好执行。如果将分析模型看作是CAT作业标准以及相应的核心技术,则公共分析平台则是标准执行和相应技术实现关键载体。依托于公共数据平台不仅能够将基础的CAT工作实现便捷化以及统一化,而且深层次的实质研究有利于CAT数据处理的高速性以及高效性,最终为推动CAT发展起到重要影响作用。
2.3审计人员的强化培训
依托于大数据良好推进CAT措施除了集中在上述两方面之外,还集中在审计人员的强化培训上,具体来讲,培训重点关注审计工作于计算机上的具 体操 作以及操作重点难点,可以构建统一培训平台,在该培训平台中予以多元化资料的分享,聘请高技能丰富 经验 人士予以平台授课,提供专业技能知识沟通互动等等机会,最终通过强化培训提升审计人员综合素质,更加推动CAT未来发展。
三、结论
综上分析可知,当前大数据环境背景下CAT需要将日常工作予以不断调整,依托于大数据促使审计人员得以素质提升,并利用公共数据平台建立和相应的数据质量保障促使CAT工作更加高效,而本文对依托于大数据良好推进CAT进行研究旨在为未来CAT优化发展献出自己的一份研究力量。
猜你喜欢:
1. 人工智能与大数据论文
2. 大数据和人工智能论文
3. 计算机大数据论文参考
4. 计算机有关大数据的应用论文
5. 有关大数据应用的论文
以上就是关于大数据的研究背景相关问题的回答。希望能帮到你,如有更多相关问题,您也可以联系我们的客服进行咨询,客服也会为您讲解更多精彩的知识和内容。
推荐阅读: