rfm模型是什么意思
大家好!今天让创意岭的小编来大家介绍下关于rfm模型是什么意思的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。
开始之前先推荐一个非常厉害的Ai人工智能工具,一键生成原创文章、方案、文案、工作计划、工作报告、论文、代码、作文、做题和对话答疑等等
只需要输入关键词,就能返回你想要的内容,越精准,写出的就越详细,有微信小程序端、在线网页版、PC客户端
创意岭作为行业内优秀的企业,服务客户遍布全球各地,如需了解SEO相关业务请拨打电话175-8598-2043,或添加微信:1454722008
本文目录:
一、用户体系搭建(二)——如何用RFM划定用户层级
RFM是很传统的数据分析模型,几乎所有文章都会提到它,然而市面上RFM模型很多只是讲解了如何通过RFM解决和划定用户群体,但是很少有详细说明RFM模型的计算方式,本文讲解RFM模型的含义及应用以及如何使用SPSS计算RFM模型。
1、RFM模型概述
RFM模型是衡量客户价值和客户创利能力的重要工具和手段。在众多的 客户关系管理 的分析模式中,RFM模型是被广泛提到的。该机械模型通过一个客户的近期购买行为、购买的总体频率以及花了多少钱3项指标来描述该客户的价值状况。(摘自百度百科)
以上是百度百科对RFM模型的描述,说的比较复杂,简单的来讲RFM是通过统计用户最近购买时间(R),购买的次数(F),购买的金额(M)这三个维度来描述用户在群体中的位置。对于这三个维度的描述具体如下:
基于这三个维度,将每个维度分为高低两种情况,我们构建出了一个三维的坐标系。
通过图表很直观的发现,我们把客户分为了2的三次方也就是8个群体。
2、RFM模型取数方法
根据RFM模型的定义,我们可以很容易的推导出,RFM模型的数据取数内容主要包括三个字段即:最近购买时间、最近购买次数、消费金额。但是在实际工作中也会有问题是我们要计算每个用户的购买时间、购买次数费事费力,所以一般也可以通过统计订单来进行计算。
当我们通过订单进行统计时需要包含以下字段
当我们准备好以上数据时就可以开始准备计算RFM模型
考虑不少人不是很了解SPSS,下面也将包含一些SPSS基础功能的讲解
1、设置度量标准
SPSS分为数据视图和变量视图,在开始前需要在变量视图中设置数据类型
SPSS中数据类型包括度量、名义、序号,
2、设置变量类型及宽度
变量类型是定义该变量是何种类,点击类型弹出变量类型选择弹窗
宽度定义变量的展示位数,对于Order_id、User_id等需要注意变量长度,让这两个字段完全展示。
另外对于,Create_time这一字段应选用日期这一类型并选择yyyy:mm:dd
我们可以直接将excel里的数据直接复制过来。
4、选择分析模型分析
Step1:选择分析模型
完成数据准备后选择 直销——RFM分析,不同汉化版本翻译可能稍有不同
Step2:选择数据格式
由于我们使用的是订单记录,所以我们选用交易数据
Stpe4:SPSS执行RFM分析
SPSS完成分析后,会生成一个新的数据文件,记录每个客户的最近一次交易日期、交易总次数、交易总金额、RS/FS/MS分值、RFM汇总分值。
RFM汇总分值=RS分值 100+FS分值 10+MS分值。
选用分析—描述统计——描述这一方法计算RS\FS\MS均值
最终可得如下结果
选择"重新编码为不同变量",先对客户的RS进行高低转化。
依据上表,逐个设置各客户类型所对应的数据规则。
设置客户类型=1的数据规则,操作如下:
重复以上操作设定不同数据类型
最后将将客户类型编码1、2、3、4、5、6、7、8转换成实际客户类型:
最终,可得出如下结果
二、RFM模型的分析
RFM的含义如下:
1、R(Recency):客户最近一次交易时间的间隔。R值越大,表示客户交易发生的日期越久,反之则表示客户交易发生的日期越近。
2、F(Frequency):客户在最近一段时间内交易的次数。F值越大,表示客户交易越频繁,反之则表示客户交易不够活跃。
3、M(Monetary):客户在最近一段时间内交易的金额。M值越大,表示客户价值越高,反之则表示客户价值越低。
4、RFM分析就是根据客户活跃程度和交易金额的贡献,进行客户价值细分的一种方法。
rfm分析方法如下:
我们通常采用交易数据的格式进行分析。因为交易数据可以整理成客户数据,而客户数据无法还原成交易数据。即用交易数据的字段可以得到客户数据的字段,反之不行。
具体是“交易数据”还是“客户数据”根据数据源文件的格式而定。
【变量】:选择各个变量
【分箱化】:评分的总分是多少
【保存】:生成哪些新的变量,可以自定义名称。
【输出】:可以全部勾选,为了能全面的解读RFM分析结果。
确定后,生成了四个新的变量
崭新-得分:最后一次交易的时间间隔得分;
频率-得分:交易总次数得分;
消费金额-得分:交易总金额得分;
RFM得分:RFM得分
分析结果解读:
该图主要用来查看每个RFM汇总得分的客户数量分布是否均匀。
我们期望均匀的分布,若不均分,则应该重新考虑RFM的适用性或尝试另一种分箱方法(减少分箱数目或随机分配绑定值)
“RFM热图”是交易金额均值在RS和FS绘制的矩阵图上的图形化表示,用颜色深浅表示交易金额均值的大小,颜色越深,表示相应矩阵块内的客户交易金额均值越高。
如本例随着RS和FS的分值增大,颜色越来越深,说明客户最近一次交易时间越近、交易次数越多,其平均交易金额越高。
该图是最后一次交易时间、交易总次数、交易总金额之间的散点图。
通过散点图可以清晰直观的看到三个分析指标两两之间的关系,便于指标相关性评估。
本例中,交易总次数和交易总金额存在较为明显的线性关系,而最后一次交易时间和另外两个分析指标之间的相关性较弱。
三、RFM模型M是必须的吗?
在RFM模型中,M是必不可少的,否则无法完成整体分析!
企业用R、F的变化,可以推测客户消费的异动状况,根据客户流失的可能性,列出客户,再从M(消费金额)的角度来分析,就可以把重点放在贡献度高且流失机会也高的客户上,重点拜访或联系,以最有效的方式挽回更多的商机。
RFM模型相关简介:
RFM模型是衡量客户价值和客户创利能力的重要工具和手段。在众多的客户关系管理(CRM)的分析模式中,RFM模型是被广泛提到的。该机械模型通过一个客户的近期购买行为、购买的总体频率以及花了多少钱3项指标来描述该客户的价值状况。
R(Recency)表示客户购买的时间有多远,F(Frequency)表示客户在时间内购买的次数,M (Monetary)表示客户在时间内购买的金额。一般的分析型CRM着重在对于客户贡献度的分析,RFM则强调以客户的行为来区分客户。
RFM非常适用于生产多种商品的企业,而且这些商品单价相对不高,如消费品、化妆品、小家电、录像带店、超市等。
它也适合在一个企业内只有少数耐久商品,但是该商品中有一部分属于消耗品,如复印机、打印机、汽车维修等消耗品;RFM对于加油站、旅行保险、运输、快递、快餐店、KTV、行动电话信用卡、证券公司等也很适合。
RFM可以用来提高客户的交易次数。业界常用的DM(直接邮寄),常常一次寄发成千上万封邮购清单,其实这是很浪费钱的。
根据统计(以一般邮购日用品而言),如果将所有R(Recency)的客户分为五级,最好的第五级回函率是第四级的三倍,因为这些客户刚完成交易不久,所以会更注意同一公司的产品信息。如果用M(Monetary)来把客户分为五级,最好与次好的平均回复率,几乎没有显著差异。
四、客户关系管理考试题 什么是rfm
这个是RFM模型。
即:
最近一次消费(Recency)
消费频率(Frequency)
消费金额(Monetary)
在众多的客户关系管理(CRM)的分析模式中,RFM模型是衡量客户价值和客户创利能力的重要工具和手段。该机械模型通过一个客户的近期购买行为、购买的总体频率以及花了多少钱三项指标来描述该客户的价值状况。
以上就是关于rfm模型是什么意思相关问题的回答。希望能帮到你,如有更多相关问题,您也可以联系我们的客服进行咨询,客服也会为您讲解更多精彩的知识和内容。
推荐阅读: