人工智能是什么行业(人工智能要学哪些东西)
大家好!今天让创意岭的小编来大家介绍下关于人工智能是什么行业的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。
开始之前先推荐一个非常厉害的Ai人工智能工具,一键生成原创文章、方案、文案、工作计划、工作报告、论文、代码、作文、做题和对话答疑等等
只需要输入关键词,就能返回你想要的内容,越精准,写出的就越详细,有微信小程序端、在线网页版、PC客户端
创意岭作为行业内优秀的企业,服务客户遍布全球各地,如需了解SEO相关业务请拨打电话175-8598-2043,或添加微信:1454722008
本文目录:
一、人工智能是什么专业?
人工智能技术关系到人工智能产品是否可以顺利应用到我们的生活场景中。在人工智能领域,它普遍包含了机器学习、知识图谱、自然语言处理、人机交互、计算机视觉、生物特征识别、AR/VR七个关键技术。
一、机器学习
机器学习(MachineLearning)是一门涉及统计学、系统辨识、逼近理论、神经网络、优化理论、计算机科学、脑科学等诸多领域的交叉学科,研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,是人工智能技术的核心。基于数据的机器学习是现代智能技术中的重要方法之一,研究从观测数据(样本)出发寻找规律,利用这些规律对未来数据或无法观测的数据进行预测。根据学习模式、学习方法以及算法的不同,机器学习存在不同的分类方法。
根据学习模式将机器学习分类为监督学习、无监督学习和强化学习等。
根据学习方法可以将机器学习分为传统机器学习和深度学习。
二、知识图谱
知识图谱本质上是结构化的语义知识库,是一种由节点和边组成的图数据结构,以符号形式描述物理世界中的概念及其相互关系,其基本组成单位是“实体—关系—实体”三元组,以及实体及其相关“属性—值”对。不同实体之间通过关系相互联结,构成网状的知识结构。在知识图谱中,每个节点表示现实世界的“实体”,每条边为实体与实体之间的“关系”。通俗地讲,知识图谱就是把所有不同种类的信息连接在一起而得到的一个关系网络,提供了从“关系”的角度去分析问题的能力。
知识图谱可用于反欺诈、不一致性验证、组团欺诈等公共安全保障领域,需要用到异常分析、静态分析、动态分析等数据挖掘方法。特别地,知识图谱在搜索引擎、可视化展示和精准营销方面有很大的优势,已成为业界的热门工具。但是,知识图谱的发展还有很大的挑战,如数据的噪声问题,即数据本身有错误或者数据存在冗余。随着知识图谱应用的不断深入,还有一系列关键技术需要突破。
三、自然语言处理
自然语言处理是计算机科学领域与人工智能领域中的一个重要方向,研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法,涉及的领域较多,主要包括机器翻译、机器阅读理解和问答系统等。
机器翻译
机器翻译技术是指利用计算机技术实现从一种自然语言到另外一种自然语言的翻译过程。基于统计的机器翻译方法突破了之前基于规则和实例翻译方法的局限性,翻译性能取得巨大提升。基于深度神经网络的机器翻译在日常口语等一些场景的成功应用已经显现出了巨大的潜力。随着上下文的语境表征和知识逻辑推理能力的发展,自然语言知识图谱不断扩充,机器翻译将会在多轮对话翻译及篇章翻译等领域取得更大进展。
语义理解
语义理解技术是指利用计算机技术实现对文本篇章的理解,并且回答与篇章相关问题的过程。语义理解更注重于对上下文的理解以及对答案精准程度的把控。随着MCTest数据集的发布,语义理解受到更多关注,取得了快速发展,相关数据集和对应的神经网络模型层出不穷。语义理解技术将在智能客服、产品自动问答等相关领域发挥重要作用,进一步提高问答与对话系统的精度。
问答系统
问答系统分为开放领域的对话系统和特定领域的问答系统。问答系统技术是指让计算机像人类一样用自然语言与人交流的技术。人们可以向问答系统提交用自然语言表达的问题,系统会返回关联性较高的答案。尽管问答系统目前已经有了不少应用产品出现,但大多是在实际信息服务系统和智能手机助手等领域中的应用,在问答系统鲁棒性方面仍然存在着问题和挑战。
自然语言处理面临四大挑战:
一是在词法、句法、语义、语用和语音等不同层面存在不确定性;
二是新的词汇、术语、语义和语法导致未知语言现象的不可预测性;
三是数据资源的不充分使其难以覆盖复杂的语言现象;
四是语义知识的模糊性和错综复杂的关联性难以用简单的数学模型描述,语义计算需要参数庞大的非线性计算
四、人机交互
人机交互主要研究人和计算机之间的信息交换,主要包括人到计算机和计算机到人的两部分信息交换,是人工智能领域的重要的外围技术。人机交互是与认知心理学、人机工程学、多媒体技术、虚拟现实技术等密切相关的综合学科。传统的人与计算机之间的信息交换主要依靠交互设备进行,主要包括键盘、鼠标、操纵杆、数据服装、眼动跟踪器、位置跟踪器、数据手套、压力笔等输入设备,以及打印机、绘图仪、显示器、头盔式显示器、音箱等输出设备。人机交互技术除了传统的基本交互和图形交互外,还包括语音交互、情感交互、体感交互及脑机交互等技术。
五、计算机视觉
计算机视觉是使用计算机模仿人类视觉系统的科学,让计算机拥有类似人类提取、处理、理解和分析图像以及图像序列的能力。自动驾驶、机器人、智能医疗等领域均需要通过计算机视觉技术从视觉信号中提取并处理信息。近来随着深度学习的发展,预处理、特征提取与算法处理渐渐融合,形成端到端的人工智能算法技术。根据解决的问题,计算机视觉可分为计算成像学、图像理解、三维视觉、动态视觉和视频编解码五大类。
目前,计算机视觉技术发展迅速,已具备初步的产业规模。未来计算机视觉技术的发展主要面临以下挑战:
一是如何在不同的应用领域和其他技术更好的结合,计算机视觉在解决某些问题时可以广泛利用大数据,已经逐渐成熟并且可以超过人类,而在某些问题上却无法达到很高的精度;
二是如何降低计算机视觉算法的开发时间和人力成本,目前计算机视觉算法需要大量的数据与人工标注,需要较长的研发周期以达到应用领域所要求的精度与耗时;
三是如何加快新型算法的设计开发,随着新的成像硬件与人工智能芯片的出现,针对不同芯片与数据采集设备的计算机视觉算法的设计与开发也是挑战之一。
六、生物特征识别
生物特征识别技术是指通过个体生理特征或行为特征对个体身份进行识别认证的技术。从应用流程看,生物特征识别通常分为注册和识别两个阶段。注册阶段通过传感器对人体的生物表征信息进行采集,如利用图像传感器对指纹和人脸等光学信息、麦克风对说话声等声学信息进行采集,利用数据预处理以及特征提取技术对采集的数据进行处理,得到相应的特征进行存储。
识别过程采用与注册过程一致的信息采集方式对待识别人进行信息采集、数据预处理和特征提取,然后将提取的特征与存储的特征进行比对分析,完成识别。从应用任务看,生物特征识别一般分为辨认与确认两种任务,辨认是指从存储库中确定待识别人身份的过程,是一对多的问题;确认是指将待识别人信息与存储库中特定单人信息进行比对,确定身份的过程,是一对一的问题。
生物特征识别技术涉及的内容十分广泛,包括指纹、掌纹、人脸、虹膜、指静脉、声纹、步态等多种生物特征,其识别过程涉及到图像处理、计算机视觉、语音识别、机器学习等多项技术。目前生物特征识别作为重要的智能化身份认证技术,在金融、公共安全、教育、交通等领域得到广泛的应用。
七、VR/AR
虚拟现实(VR)/增强现实(AR)是以计算机为核心的新型视听技术。结合相关科学技术,在一定范围内生成与真实环境在视觉、听觉、触感等方面高度近似的数字化环境。用户借助必要的装备与数字化环境中的对象进行交互,相互影响,获得近似真实环境的感受和体验,通过显示设备、跟踪定位设备、触力觉交互设备、数据获取设备、专用芯片等实现。
虚拟现实/增强现实从技术特征角度,按照不同处理阶段,可以分为获取与建模技术、分析与利用技术、交换与分发技术、展示与交互技术以及技术标准与评价体系五个方面。获取与建模技术研究如何把物理世界或者人类的创意进行数字化和模型化,难点是三维物理世界的数字化和模型化技术;分析与利用技术重点研究对数字内容进行分析、理解、搜索和知识化方法,其难点是在于内容的语义表示和分析;交换与分发技术主要强调各种网络环境下大规模的数字化内容流通、转换、集成和面向不同终端用户的个性化服务等,其核心是开放的内容交换和版权管理技术;展示与交换技术重点研究符合人类习惯数字内容的各种显示技术及交互方法,以期提高人对复杂信息的认知能力,其难点在于建立自然和谐的人机交互环境;标准与评价体系重点研究虚拟现实/增强现实基础资源、内容编目、信源编码等的规范标准以及相应的评估技术。
目前虚拟现实/增强现实面临的挑战主要体现在智能获取、普适设备、自由交互和感知融合四个方面。在硬件平台与装置、核心芯片与器件、软件平台与工具、相关标准与规范等方面存在一系列科学技术问题。总体来说虚拟现实/增强现实呈现虚拟现实系统智能化、虚实环境对象无缝融合、自然交互全方位与舒适化的发展趋势
二、人工智能专业属于什么专业类别
人工智能是一门新兴的高尖端学科,属于社会科学与自然科学的交叉学科,涉及了数学、心理学、神经生理学、信息论、计算机科学、哲学和认知科学、不定性论以及控制论。研究的范畴包含自然语言的处理、机器算法的学习、神经网络、模式识别、智能搜索。应用的领域包含机器翻译、语言和图像理解、自动程序设计、专家系统等。
想研究人工智能的方向,近两年很多大学都开设了人工智能学院。西安电子科技大学人工智能学院、中国科学院大学人工智能技术学院、南京大学人工智能学院三所高校在人工智能领域皆属于顶尖。
人工智能专业相关研究方向,有很多的分支学科,包含模式识别与智能系统、计算机应用技术、智能科学与技术、信息与通信工程、计算机科学与技术、控制科学与工程、人工智能与信息处理、计算机应用技术、生物信息处理方向、计算机科学与技术超级计算方向等。
对于本科专业的学习,如果有意从事人工智能方向的相关工作,可以尝试选择以下的相关专业:
计算机科学与技术。人工智能的工作既需要非常扎实和广泛的数学基础的同时也要求很高的实际操作能力,人工智能专业方向的如Machine Learning,Computer Vision, Natural Language Processing,Data Mining等课程,在计算机科学与技术专业在高年级和研究生阶段都有对应的课程和研究方向。
数据科学与大数据技术。既要掌握基础的程序设计语言,也要掌握大数据平台的运用,Numpy、Matplotlib、Pandas,SciPy和scikit-learn等科学计算与机械学习库的掌握,完成技术方案设计及算法设计和核心模块开发,组织解决项目开发过程中的重大技术问题;负责深度神经网络技术平台的架构、开发方案的设计、应用与实现(包括机器学习、图像处理等的算法)。
2人工智能非孤立专业,不宜另起炉灶
近日,教育部公布了新增本科专业目录,“人工智能”专业位列其中,有35所高校获批建设。“它反映的是我国人工智能本科教育呈现出的繁荣景象。”3日,中国人工智能学会教育工作委员会主任王万森在接受科技日报记者专访时表示,人工智能本科专业的设立,对我国各级各类院校的高层次人工智能人才培养,具有重要的实际意义和深远的历史意义。
不过,也有人感到困惑——在本科专业目录中,早已有了智能科学与技术专业,人工智能专业和它到底有何区别?
北京航空航天大学教授李波告诉科技日报记者,一般认为,智能科学与技术的专业面偏宽,与行业的对应关系不直观,而且脑科学、认知科学、心理学一般划分在生命科学领域。北航牵头组织新申报并获批的人工智能专业,是信息领域的一个本科专业。“至于如何开设,应该鼓励各高校根据自身情况进行选择。”李波说,感知、认知基础好的学校可以选择智能科学与技术,智能技术及应用基础好的学校可以选择人工智能,当然,学校也能在现有计算机或其他专业中培养人工智能方面的人才。“总之,各高校应结合自身特点,制定有自身特色的培养方案和课程体系。”
王万森亲历了我国智能科学与技术本科专业创建、发展的全部过程。在他看来,它和人工智能专业并没有本质区别,差别只是在于专业名称不同,名字的社会认知度不同。
18年前,中国人工智能学会在北京召开了一次规模宏大的学术年会,部分与会代表提出了在我国建立人工智能本科专业的建议,该建议得到大多数参会人员的认可。但就专业名称,大家最后的共识是叫“智能科学与技术”专业。
王万森说,这是因为,当时人工智能正处于其发展的低潮,在“寒冬”时期将专业命名为“人工智能”,其结果可以想象。而且,这一名字沿用了计算机科学与技术专业名称的结构形式,也符合我国高等教育的惯例。
后来,教育部高等学校本科计算机类专业教学指导委员会设立了“智能科学与技术”专业教学指导工作组,确定了该专业的知识结构。从专业知识结构来看,该专业和人工智能专业也没有本质区别。“也就是在上述专业知识结构下,我国智能科学与技术专业15年来的教育实践,为我国培养了大批高层次人工智能专业人才。”王万森表示。
至于两个专业如何并行发展,王万森也有自己的想法。一是可以将“智能科学与技术”作为研究生教育层面的一级学科名称,把“人工智能”作为本科教育层面的专业名称;如果两个本科专业一定要并行存在,那么建议在研究型高校和部分应用研究型高校采用“智能科学与技术”专业名称,而在部分应用研究型高校、应用型高校和技术型高校采用“人工智能”专业名称——前者注重研究,后者强调应用。
不过,王万森也强调,办好高质量的人工智能高等教育,关键不在专业名字叫什么。
“人工智能不是一个孤立专业,而是一个专业类。”例如,沿大数据智能这一学科领域衍生出了“数据科学与大数据技术”专业;沿智能自主系统学科领域衍生出来了“机器人工程”专业……“随着新一代人工智能的快速发展及其应用的不断深入,很有可能还会不断衍生新的专业,这样就形成了一个以智能科学与技术专业/人工智能专业为核心,外加衍生层诸专业的新生专业类,即人工智能类专业。”王万森说。而整个人工智能专业教育体系,除上述核心层、衍生层专业外,还应该包括支持人工智能复合型人才培养的复合型专业和支持人工智能交叉型人才培养的交叉型专业。
王万森建议,应创新人工智能与智能科学与技术专业的协同发展模式,构建与新一代人工智能发展相适应的知识结构和课程体系,实现人工智能和其他专业的有机复合与交叉。
“人工智能专业建设不应颠覆性地另起炉灶,推倒重来,而是要结合实际需求,和原有专业创新、协同发展。”他表示,智能科学与技术/人工智能专业看起来发展得如火如荼,但诸多深层次问题并没有真正得到解决,人工智能与其他社会领域专业的有机复合、与其他学科专业的交叉融合都还不够深入。“这些需要引起我们的高度重视。”
三、人工智能有哪些专业学什么?怎么从事人工智能行业有什么工作岗位?
众所周知,人工智能时代即将全面来袭,势不可挡。有人说,人工智能如同一把双刃剑,在给人们生活提供诸多便利的同时却又会让很多人陷入失业的困境。目前,很多高校都成立了人工智能研究院,清华大学还增设了人工智能学堂班。那么,人工智能有哪些专业怎么样?主要学什么?怎么从事人工智能行业?有什么工作岗位?今天小编就来为大家一一揭秘。人工智能,英文缩写AI,它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学,属于自然科学和社会科学的交叉。所涉及的学科包括:计算机科学、信息论、控制论、自动化、仿生学、生物学、心理学、数理逻辑、语言学、医学和哲学等多门学科。
据了解,和人工智能最有直接联系的专业包括物联网应用技术、计算机科学与技术、软件工程等。其学习课程包括机器学习、人工智能导论(搜索法等)、图像识别、生物演化论、自然语言处理、语义网、博弈论等,前置课程有信号处理、线性代数、微积分、编程,还需要学生具备数据结构基础。目前,国内有32所院校都开设了人工智能相关专业,其中,清华大学计算机系智能技术与系统国家重点实验室是国内在人工智能人才培养和科学研究的重镇;北京大学智能科学与技术专业主要从事机器感知、智能机器人、智能信息处理和机器学习等交叉学科的研究和教学;浙江大学在人工智能方面有着肥沃的土壤,其计算机学院下设的人工智能研究所是中国设立最早的人工智能研究机构之一。其他知名院校比如上海交通大学、学、复旦大学、哈尔滨工业大学、中国科学技术大学、华中科技大学、东南大学等,也都开设了人工智能相关专业,并已经取得了一定的研究成果。算法、大数据、机械学习等都是人工智能的重要组成方向,人工智能的就业都可以在这些方面考虑。据了解,人工智能就业岗位相对广泛,比如WEB前端开发、WEB全栈开发、Python爬虫工程、大数据开发、人工智能开发等。据调查统计发现,近年来人工智能研究方向的毕业生大多进了大型互联网公司,比如BAT、华为、网易、美国的微软、谷歌、facebook、亚马逊等。
四、人工智能专业主要学什么 就业方向有哪些
在填报高考志愿时,有小伙伴比较关心人工智能专业有哪些就业方向?下面是由编辑为大家整理的“人工智能专业主要学什么就业方向有哪些”。
人工智能专业要学哪些课程
数学基础课程:高等数学,线性代数,概率论数理统计和随机过程,离散数学,数值分析等。
算法基础课程:人工神经网络,支持向量机,遗传算法等,还有各个领域需要的算法,比如你要让机器人自己在位置环境导航和建图就需要研究SLAM。
人工智能是一个综合学科,人工智能专业的主要领域是:机器学习、人工智能导论、图像识别、生物演化论、自然语言处理、语义网、博弈论等。
人工智能专业的就业方向
1、算法工程师。进行人工智能相关前沿算法的研究,包括机器学习、知识应用、智能决策等技术的应用。以机器学习的过程为例,涉及到数据收集、数据整理、算法设计、算法训练、算法验证、算法应用等步骤,所以算法是机器学习开发的重点。
2、程序开发工程师。一方面程序开发工程师需要完成算法实现,另一方面程序开发工程师需要完成项目的落地,需要完成各个功能模块的整合。
3、人工智能运维工程师。大数据与AI产品相关运营、运维产品研发;相关组件的运维工具系统的开发与建设;提供大数据与AI云产品客户支持。
4、智能机器人研发工程师。研发方向主要从事机器人控制系统开发,高精度器件的设计研发等。工业机器人系统集成方向主要做工作站设计,电气设计,器件选型,机器人调试,编程,维护等。
5、AI硬件专家。AI领域内另外一种日益增长的蓝领工作是负责创建AI硬件(如GPU芯片)的工业操作工作。大科技公司目前已经采取了措施,来建立自己的专业芯片。
人工智能专业的就业前景
人工智能是一个快速发展的领域,现在及未来对人才的需求量很大。和其他技术岗位相比,人工智能的人才少,竞争低,工资相对高。所以现在是进入人工智能领域的好时机。人工智能是目前最受互联网界和市场关注的新技术。全球主要互联网企业均在向人工智能方向转型,并大幅增加相关科研、技术和产业应用布局方面的投入。
人工智能将大幅改善依赖劳动力创造的劳动密集型、简单重复性的传统经济运行模式,并依托此经济模式构建万物互联、智能协同的产业体系,打造国际领先的智能社会。人工智能将实现提升效率、降低成本的发展。
人工智能相关技术将首先在互联网行业开始应用,然后陆续普及到其他行业。所以,从大的发展前景来看,人工智能相关领域的发展前景还是非常广阔的。人工智能作为重要的技术之一,必然会在产业互联网发展的过程中释放出大量的就业岗位。
以上就是关于人工智能是什么行业相关问题的回答。希望能帮到你,如有更多相关问题,您也可以联系我们的客服进行咨询,客服也会为您讲解更多精彩的知识和内容。
推荐阅读: