计算机视觉常用算法(计算机视觉常用算法是什么)
大家好!今天让创意岭的小编来大家介绍下关于计算机视觉常用算法的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。
开始之前先推荐一个非常厉害的Ai人工智能工具,一键生成原创文章、方案、文案、工作计划、工作报告、论文、代码、作文、做题和对话答疑等等
只需要输入关键词,就能返回你想要的内容,越精准,写出的就越详细,有微信小程序端、在线网页版、PC客户端
创意岭作为行业内优秀的企业,服务客户遍布全球各地,如需了解SEO相关业务请拨打电话175-8598-2043,或添加微信:1454722008
本文目录:
一、在哪可以买到模式识别实验报告
模式识别实验报告联系客服
发布时间 : 2023/1/20 20:50:49 星期五 文章模式识别实验报告更新完毕开始阅读
实验1 图像的贝叶斯分类
1.1 实验目的
将模式识别方法与图像处理技术相结合,掌握利用最小错分概率贝叶斯分类器进行图像分类的基本方法,通过实验加深对基本概念的理解。
1.2 实验仪器设备及软件
HP D538、MATLAB
1.3 实验原理 1.3.1 基本原理
阈值化分割算法是计算机视觉中的常用算法,对灰度图象的阈值分割就是先确定一个处于图像灰度取值范围内的灰度阈值,然后将图像中每个像素的灰度值与这个阈值相比较。并根据比较的结果将对应的像素划分为两类,灰度值大于阈值的像素划分为一类,小于阈值的划分为另一类,等于阈值的可任意划分到两类中的任何一类。此过程中,确定阈值是分割的关键。
对一般的图像进行分割处理通常对图像的灰度分布有一定的假设,或者说是基于一定的图像模型。最常用的模型可描述如下:假设图像由具有单峰灰度分布的目标和背景组成,处于目标和背景内部相邻像素间的灰度值是高度相关的,但处于目标和背景交界处两边的像素灰度值有较大差别,此时,图像的灰度直方图基本上可看作是由分别对应于目标和背景的两个单峰直方图混合构成。而且这两个分布应大小接近,且均值足够远,方差足够小,这种情况下直方图呈现较明显的双峰。类似地,如果图像中包含多个单峰灰度目标,则直方图可能呈现较明显的多峰。
上述图像模型只是理想情况,有时图像中目标和背景的灰度值有部分交错。这时如用全局阈值进行分割必然会产生一定的误差。分割误差包括将目标分为背
景和将背景分为目标两大类。实际应用中应尽量减小错误分割的概率,常用的一种方法为选取最优阈值。这里所谓的最优阈值,就是指能使误分割概率最小的分割阈值。图像的直方图可以看成是对灰度值概率分布密度函数的一种近似。如一幅图像中只包含目标和背景两类灰度区域,那么直方图所代表的灰度值概率密度函数可以表示为目标和背景两类灰度值概率密度函数的加权和。如果概率密度函数形式已知,就有可能计算出使目标和背景两类误分割概率最小的最优阈值。 假设目标与背景两类像素值均服从正态分布且混有加性高斯噪声,上述分类问题可以使用模式识别中的最小错分概率贝叶斯分类器来解决。以p1与p2分别表示目标与背景的灰度分布概率密度函数,P1与P2分别表示两类的先验概率,则图像的混合概率密度函数可用下式表示
p(x)?P1p1(x)?P2p2(x)
式中p1和p2分别为
p1(x)?1e2??1?(x??1)22?12
p2(x)?1e2??2?(x??2)22?22
P1?P2?1
?1、?2是针对背景和目标两类区域灰度均值?1与?2的标准差。若假定目标的灰
度较亮,其灰度均值为?2,背景的灰度较暗,其灰度均值为?1,因此有
?1??2
现若规定一门限值T对图像进行分割,势必会产生将目标划分为背景和将背景划分为目标这两类错误。通过适当选择阈值T,可令这两类错误概率为最小,则该阈值T即为最佳阈值。
把目标错分为背景的概率可表示为
E1(T)??p2(x)dx
??T把背景错分为目标的概率可表示为
E2(T)??总的误差概率为
??Tp1(x)dx
E(T)?P2E1(T)?PE12(T)
为求得使误差概率最小的阈值T,可将E(T)对T求导并令导数为零,可得
P1p1(T)?P2p2(T)
代换后,可得
P(T??1)2(T??2)21?2 ln???P2?12?122?12此时,若设?1??2??,则有
T?若还有P1?P2的条件,则
T??1??22?P??2?ln?2? ?1??2?P1??1??22
这时的最优阈值就是两类区域灰度均值?1与?2的平均值。
上面的推导是针对图像灰度值服从正态分布时的情况,如果灰度值服从其它分布,依理也可求出最优阈值来。一般情况下,在不清楚灰度值分布时,通常可假定灰度值服从正态分布。因此,本课题中亦可使用此方法来求得最优阈值,来对实验图像进行分割。
1.3.2 最优阈值的迭代算法
在实际使用最优阈值进行分割的过程中,需要利用迭代算法来求得最优阈值。设有一幅数字图像f(x,y),混有加性高斯噪声,可表示为
g(x,y)?f(x,y)?n(x,y)
此处假设图像上各点的噪声相互独立,且具有零均值,如果通过阈值分割将图像分为目标与背景两部分,则每一部分仍然有噪声点随机作用于其上,于是,
目标g1(x,y)和g2(x,y)可表示为
g1(x,y)?f1(x,y)?n(x,y) g2(x,y)?f2(x,y)?n(x,y)
迭代过程中,会多次地对g1(x,y)和g2(x,y)求均值,则
E{g1(x,y)}?E{f1(x,y)?n(x,y)}?E{f1(x,y)} E{g2(x,y)}?E{f2(x,y)?n(x,y)}?E{f2(x,y)}
可见,随着迭代次数的增加,目标和背景的平均灰度都趋向于真实值。因此,用迭代算法求得的最佳阈值不受噪声干扰的影响。 利用最优阈值对实验图像进行分割的迭代步骤为: (1)确定一个初始阈值T0,T0可取为
T0?Smin?S2max
式中,Smin和Smax为图像灰度的最小值和最大值。
(2)利用第k次迭代得到的阈值将图像分为目标R1和背景R2两大区域,其中
R1?{f(x,y)|f(x, } ?y)k T R2?{f(x,y)|0?f(x,y)?Tk}
(3)计算区域R1和R2的灰度均值S1和S2。 (4)计算新的阈值Tk?1,其中
Tk?1?S1?S2 2 (5)如果|Tk?1?Tk|小于允许的误差,则结束,否则k?k?1,转步骤(2)。 利用迭代法求得最优阈值后,仍需进行一些人工调整才能将此阈值用于实验图像的分割,这是因为,这种最优阈值仍然属于全局阈值,它利用了图像中所有像素点的信息,但当光照不均匀时,图像中部分区域的灰度值可能差距较大,造成计算出的最优阈值分割效果不理想,此时,可设一人工经验因子进行校正
二、计算机视觉中哪些具体的数学知识比较重要
一是线性代数或者矩阵理论,因为计算机视觉的主要研究对象是图像,而数字图像又是用矩阵来表示的。
二是概率与统计,因为计算机视觉研究的主要目标是让计算机通过摄像头具有理解自然场景的能力。处理实际生活当中的推断问题那就要用到概率与统计知识了。
计算机视觉研究中用到的其他方面的数学还有很多,比如:离散数学、图论、微分几何、黎曼几何、李群和李代数、流形学习、张量分析、主成分分析、非线性优化等等。
在做计算机视觉研究中,你没有必要先把这些基础知识都学习了再来搞研究。即使你把这些数学知识都掌握了,针对研究中要解决的问题说不定用的也不是这些数学知识。
个人之见:带着研究的问题去寻找数学上的工具,比掌握了数学知识再来寻找问题要符合实际。除非你开始学的是数学专业,不然的话,研究中最好以问题为导向,用到什么就学习什么,否则学习很多数学基础知识,到了最后大多数学过的知识却没用上。
总之,研究中用到什么数学知识就学习什么知识就好,没必要把所有涉及到的都学一遍,搞科研毕竟不是在应付数学专业考试。
如果你做计算机视觉研究同时又对数学有兴趣,可以关注数学方面的最新科研进展,看看有哪些新理论、新算法出现,能不能用到你的研究方向上,这样做就足够了。用新方法去解决老问题,也是一种有效的创新手段。
最后,还是要强调:做计算机视觉方面的研究,完全没有必要一开始就把自己埋到数学书堆里。
三、数据挖掘的常用算法有哪几类
有十大经典算法
下面是网站给出的答案:
1. C4.5
C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法. C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进:
1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足;
2) 在树构造过程中进行剪枝;
3) 能够完成对连续属性的离散化处理;
4) 能够对不完整数据进行处理。
C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。
2. The k-means algorithm 即K-Means算法
k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均 方误差总和最小。
3. Support vector machines
支持向量机,英文为Support Vector Machine,简称SV机(论文中一般简称SVM)。它是一种监督式学习的方法,它广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更 高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假 定平行超平面间的距离或差距越大,分类器的总误差越小。一个极好的指南是C.J.C Burges的《模式识别支持向量机指南》。van der Walt 和 Barnard 将支持向量机和其他分类器进行了比较。
4. The Apriori algorithm
Apriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法。其核心是基于两阶段频集思想的递推算法。该关联规则在分类上属于单维、单层、布尔关联规则。在这里,所有支持度大于最小支持度的项集称为频繁项集,简称频集。
5. 最大期望(EM)算法
在统计计算中,最大期望(EM,Expectation–Maximization)算法是在概率(probabilistic)模型中寻找参数最大似然 估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variabl)。最大期望经常用在机器学习和计算机视觉的数据集聚(Data Clustering)领域。
6. PageRank
PageRank是Google算法的重要内容。2001年9月被授予美国专利,专利人是Google创始人之一拉里·佩奇(Larry Page)。因此,PageRank里的page不是指网页,而是指佩奇,即这个等级方法是以佩奇来命名的。
PageRank根据网站的外部链接和内部链接的数量和质量俩衡量网站的价值。PageRank背后的概念是,每个到页面的链接都是对该页面的一次投票, 被链接的越多,就意味着被其他网站投票越多。这个就是所谓的“链接流行度”——衡量多少人愿意将他们的网站和你的网站挂钩。PageRank这个概念引自 学术中一篇论文的被引述的频度——即被别人引述的次数越多,一般判断这篇论文的权威性就越高。
7. AdaBoost
Adaboost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强的最终分类器 (强分类器)。其算法本身是通过改变数据分布来实现的,它根据每次训练集之中每个样本的分类是否正确,以及上次的总体分类的准确率,来确定每个样本的权 值。将修改过权值的新数据集送给下层分类器进行训练,最后将每次训练得到的分类器最后融合起来,作为最后的决策分类器。
8. kNN: k-nearest neighbor classification
K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。
9. Naive Bayes
在众多的分类模型中,应用最为广泛的两种分类模型是决策树模型(Decision Tree Model)和朴素贝叶斯模型(Naive Bayesian Model,NBC)。 朴素贝叶斯模型发源于古典数学理论,有着坚实的数学基础,以 及稳定的分类效率。同时,NBC模型所需估计的参数很少,对缺失数据不太敏感,算法也比较简单。理论上,NBC模型与其他分类方法相比具有最小的误差率。 但是实际上并非总是如此,这是因为NBC模型假设属性之间相互独立,这个假设在实际应用中往往是不成立的,这给NBC模型的正确分类带来了一定影响。在属 性个数比较多或者属性之间相关性较大时,NBC模型的分类效率比不上决策树模型。而在属性相关性较小时,NBC模型的性能最为良好。
10. CART: 分类与回归树
CART, Classification and Regression Trees。 在分类树下面有两个关键的思想。第一个是关于递归地划分自变量空间的想法;第二个想法是用验证数据进行剪枝。
四、计算机视觉算法是做什么的
通过C/C++或Java任一种编程语言,Python/ perl/shell中任一种脚本语言,实现数据分析和挖掘工具,最终通过算法实现使用计算机及相关设备对生物视觉的一种模拟。
以上就是关于计算机视觉常用算法相关问题的回答。希望能帮到你,如有更多相关问题,您也可以联系我们的客服进行咨询,客服也会为您讲解更多精彩的知识和内容。
推荐阅读: