HOME 首页
SERVICE 服务产品
XINMEITI 新媒体代运营
CASE 服务案例
NEWS 热点资讯
ABOUT 关于我们
CONTACT 联系我们
创意岭
让品牌有温度、有情感
专注品牌策划15年

    银行rfm模型应用实例(rfm模型概述及应用分析)

    发布时间:2023-04-18 17:09:07     稿源: 创意岭    阅读: 106        

    大家好!今天让创意岭的小编来大家介绍下关于银行rfm模型应用实例的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。

    开始之前先推荐一个非常厉害的Ai人工智能工具,一键生成原创文章、方案、文案、工作计划、工作报告、论文、代码、作文、做题和对话答疑等等

    只需要输入关键词,就能返回你想要的内容,越精准,写出的就越详细,有微信小程序端、在线网页版、PC客户端

    官网:https://ai.de1919.com

    创意岭作为行业内优秀的企业,服务客户遍布全球各地,如需了解SEO相关业务请拨打电话175-8598-2043,或添加微信:1454722008

    本文目录:

    银行rfm模型应用实例(rfm模型概述及应用分析)

    一、4种常见的用户分层方法(RFM核心模型)

    一.什么是用户分层?

    用户分层是以 用户价值(比如说:活跃用户、高价值用户) 为中心来进行切割的,在同一分层模型下,一个用户只会处于一个层次中。还有一种说法是用户分群,它是以 用户属性(用户身上的某一类标签,比如:喜欢在地铁上看书的用户)为中心 进行划分,1个用户可能会同时拥有多个属性。

    用户分层的本质是一种以用户和特征、用户行为等为中心对用户进行细分的精细化运营。

    二.4种常见的用户分层方法?

    分层实施的两大核心:

    第一,我们找到一个分层的模型之后,处于不同层级的用户,需要能够被通过数据字段或标签等方式识别区分出来。

    第二,面向每一类用户的运营机制或策略是明确稳定的。

    用户分层的两个维度:

    第一个维度:业务主链条标准化程度是高还是低

    举个栗子:像手机里的闹钟,定了闹钟之后,响了就取消掉,闹钟的过程简单且标准化程度非常高。再比如,像一些阅读类APP它的用户所在的地区,用户的年龄及身份不同,用户的需求也会不同,它的业务主链条标准化程度低,是一个非标的产品,并且有时它的业务链条非常长还非常的复杂。

    第二个维度:用户在产品中互相影响的可能性是高还是低

    有一些产品用户是会在产品当中发生关系的,而有些产品呢就不会,有时候同一类型的产品,用户之间的影响也可能会不同。

    举个栗子:像理财类的产品,用户之间的影响非常的低,但是像抖音、知乎这样的产品,用户之间的关系程度就高一些。

    当我们知道用户处在哪个维度之后,我们就可以知道运用哪一种分层方式了。

    第一类:用户个性化特质&需求区隔分层

    这一类的分层方式就比较适合适用在业务主链条标准化程度低的,业务主链条比较多样,业务比较复杂这样的产品当中。

    我们对用户进行个性化特质的区隔分层,要首先清楚用户个性化区隔的常见维度有哪些:

    由上图可以发现,自然属性里进行区隔要依靠的是用户的基础数据,个性化需求里面的显性和隐性消费偏好要依赖的是用户的行为数据。场景则是依赖于时间、地理位置进行区分的。

    那进行个性化区隔分层的依据是什么呢?

    我们要看看用户是否会因为上面所陈列的这些行为和属性的不同,导致其需求、使用动机、使用偏好等会出现较大差异。

    那怎么判断呢?要么靠常识和用户洞察,要么靠数据。

    进行用户个性化区隔分层时的两种选择:

    第一种:选择一个维度对用户进行划分,分别给予定向解决文案。像美柚这款产品,用户在不同的阶段,比如:我在备孕、我怀孕了、我是辣妈等不同的维度进行相关信息的区分和推送。

    第二种:选择两个有相关性的维度通过交叉区隔对用户进行划分,再分别给予定向的解决方案。比方如某基金理财类的产品:通过两个维度来切割对用户进行划分。

    第二类: 用户身份区隔分层

    这一类的分层方式就比较适合运用在用户在产品中互相影响的可能性高的产品当中。

    一款产品当中,如果用户之间是可见,可被影响的,我们赋予用户身份的特质(加V、勋章等)才会有意义。

    说到用户身份区隔分层就会提到用户金字塔模型:

    用户金字塔模型是按照用户的价值贡献度大小或用户影响力的稀缺程度由下到上搭建一个金字塔模型,再赋予每一类用户对应的角色和权益,搭建一个良性关系。

    那如何梳理并搭建一个产品的用户金字塔模型呢?

    首先,先梳理出产品的业务逻辑(这个产品当中有哪几类业务角色,这个业务角色当中他们是怎么发生关系的),然后逐次思考:

    第三类:用户价值区隔分层

    通过判断用户的价值高中低,来对用户完成分层。这一类和第四类的分层方式是通用的,所有产品都可以应用。

    用户价值区隔分层有两种做法:

    第一种:依靠用户生命周期定义对用户进行价值区隔

    生命周期的定义我们上面说过,用户生命周期的定义,必然与 用户的价值成长路径 有关。不同的产品用户价值成长路径也会不同

    用户生命周期的定义无非就两种:

    第一种是强付费类的产品

    我们把用户从进入到付费, 持续付费到流失这样一个典型的路径画出来,然后给不同的用户划分不同的阶段,每个阶段被定义成用户生命周期里的层次。

    第二种:是流量类的产品

    第二种:通过关键用户行为对用户进行价值区隔。

    这两种方式的有共性也有差异性, 共性是:都需要找到某一种方式对于我们当前站内的用户的用户价值进行判断。并对用户价值的区间(是高还是低)做界定。然后对不同价值区间的用户做针对性的运营。不同的是: 去判断用户价值第一种依靠的是用户的生命周期的模型,第二种是通过几个关键用户的行为做交叉分析。

    通过关键用户行为对用户进行价值区隔是找到产品中能够衡量用户价值的关键行为,对其进行交叉分析和评估,最终形成某种分层模型,比如经典的RFM模型。

    那什么是RFM模型呢?

    RFM模型是衡量客户价值和客户创利能力的重要工具和手段,它通过 Recency-距离最近一次交易、Frequency-交易频率、Monetary-交易金额 这三项指标来描述该 客户的价值状态,依据这三项指标 划分8类客户价值。

    实施RFM用户分层的操作步骤是什么?

    第一步:抓取用户R、F、M三个维度下的原始数据。

    首先,我们需求提出数据的需求,并定义出F中的“一段时间”是多久以及用户类型,然后拉出该时间段内所有的订单数据,数据字段包括用户ID、下单时间和订单金额。这里需要注意的是定义一段时间,我们可以拍脑袋,也可以参考业务进展和需求,一般如果业务比较稳定的情况下,多以自然年或季度、半年等为单位来进行定义。

    第二步:定义R、F、M的评估模型与中值

    我们需要根据业务特性或数据分布情况来划分数据分布区间,设定评估模型,然后设定中值。

    第三步:进行数据处理,获取用户的R、F、M值

    第四步:参照评估模型与中值,对用户进行分层。

    第五步:针对不同层级用户制定运营策略,推进落地。

    第四类:AARRR模型分层

    AARRR模型通常是在增长的语境下看到的,我们也可以通过这个模型对用户进行粗放的分层。

    第一种AARRR模型:

    第二种AARRR模型:

    两种模型并没有绝对的好与坏,只是适用的场景不同,像滴滴这种产品,用户上一就收费,收入放在前面比较好。

    如果是流量型的产品,有了流量才能增值用第一种AARRR模型比较好一些。

    想用好AARRR模型来用用户分层的话,一定要找到合适的数据指标,来描述和定义处于每一层级的用户。

    链接:https://www.jianshu.com/p/5bb31f906aee

    二、RFM模型分析与客户细分

    RFM模型分析与客户细分

    根据美国数据库营销研究所Arthur Hughes的研究,客户数据库中有三个神奇的要素,这三个要素构成了数据分析最好的指标:最近一次消费(Recency)、消费频率(Frequency)、消费金额(Monetary)。

    RFM模型:R(Recency)表示客户最近一次购买的时间有多远,F(Frequency)表示客户在最近一段时间内购买的次数,M (Monetary)表示客户在最近一段时间内购买的金额。一般原始数据为3个字段:客户ID、购买时间(日期格式)、购买金额,用数据挖掘软件处理,加权(考虑权重)得到RFM得分,进而可以进行客户细分,客户等级分类,Customer Level Value得分排序等,实现数据库营销!

    这里再次借用@数据挖掘与数据分析的RFM客户RFM分类图。

    本次分析用的的软件工具:IBM SPSS Statistics 19,IBM SPSS Modeler14.1,Tableau7.0,EXCEL和PPT

    因为RFM分析仅是项目的一个小部分分析,但也面临海量数据的处理能力,这一点对计算机的内存和硬盘容量都有要求。

    先说说对海量数据挖掘和数据处理的一点体会:(仅指个人电脑操作平台而言)

    一般我们拿到的数据都是压缩格式的文本文件,需要解压缩,都在G字节以上存储单位,一般最好在外置电源移动硬盘存储;如果客户不告知,你大概是不知道有多少记录和字段的;

    Modeler挖掘软件默认安装一般都需要与C盘进行数据交换,至少需要100G空间预留,否则读取数据过程中将造成空间不足

    海量数据处理要有耐心,等待30分钟以上运行出结果是常有的现象,特别是在进行抽样、合并数据、数据重构、神经网络建模过程中,要有韧性,否则差一分钟中断就悲剧了,呵呵;

    数据挖掘的准备阶段和数据预处理时间占整个项目的70%,我这里说如果是超大数据集可能时间要占到90%以上。一方面是处理费时,一方面可能就只能这台电脑处理,不能几台电脑同时操作;

    多带来不同,这是我一直强调的体验。所以海量数据需要用到抽样技术,用来查看数据和预操作,记住:有时候即使样本数据正常,也可能全部数据有问题。建议数据分隔符采用“|”存储;

    如何强调一个数据挖掘项目和挖掘工程师对行业的理解和业务的洞察都不为过,好的数据挖掘一定是市场导向的,当然也需要IT人员与市场人员有好的沟通机制;

    数据挖掘会面临数据字典和语义层含义理解,在MetaData元数据管理和理解上下功夫会事半功倍,否则等数据重构完成发现问题又要推倒重来,悲剧;

    每次海量大数据挖掘工作时都是我上微博最多的时侯,它真的没我算的快,只好上微博等它,哈哈!

    传统RFM分析转换为电信业务RFM分析主要思考:

    这里的RFM模型和进而细分客户仅是数据挖掘项目的一个小部分,假定我们拿到一个月的客户充值行为数据集(实际上有六个月的数据),我们们先用IBM Modeler软件构建一个分析流:

    数据结构完全满足RFM分析要求,一个月的数据就有3千万条交易记录!

    我们先用挖掘工具的RFM模型的RFM汇总节点和RFM分析节点产生R(Recency)、F(Frequency)、M (Monetary);

    接着我们采用RFM分析节点就完成了RFM模型基础数据重构和整理;

    现在我们得到了RFM模型的Recency_Score、Frequency_Score、Monetary_Score和RFM_Score;这里对RFM得分进行了五等分切割,采用100、10、1加权得到RFM得分表明了125个RFM魔方块。

    传统的RFM模型到此也就完成了,但125个细分市场太多啦无法针对性营销也需要识别客户特征和行为,有必要进一步细分客户群;

    另外:RFM模型其实仅仅是一种数据处理方法,采用数据重构技术同样可以完成,只是这里固化了RFM模块更简单直接,但我们可以采用RFM构建数据的方式不为RFM也可用该模块进行数据重构。

    我们可以将得到的数据导入到Tableau软件进行描述性分析:(数据挖掘软件在描述性和制表输出方面非常弱智,哈哈)

    我们也可以进行不同块的对比分析:均值分析、块类别分析等等

    这时候我们就可以看出Tableau可视化工具的方便性

    接下来,我们继续采用挖掘工具对R、F、M三个字段进行聚类分析,聚类分析主要采用:Kohonen、K-means和Two-step算法:

    这时候我们要考虑是直接用R(Recency)、F(Frequency)、M (Monetary)三个变量还是要进行变换,因为R、F、M三个字段的测量尺度不同最好对三个变量进行标准化,例如:Z得分(实际情况可以选择线性插值法,比较法,对标法等标准化)!另外一个考虑:就是R、F、M三个指标的权重该如何考虑,在现实营销中这三个指标重要性显然不同!

    有资料研究表明:对RFM各变量的指标权重问题,Hughes,Arthur认为RFM在衡量一个问题上的权重是一致的,因而并没有给予不同的划分。而Stone,Bob通过对信用卡的实证分析,认为各个指标的权重并不相同,应该给予频度最高,近度次之,值度最低的权重;

    这里我们采用加权方法:WR=2 WF=3 WM=5的简单加权法(实际情况需要专家或营销人员测定);具体选择哪种聚类方法和聚类数需要反复测试和评估,同时也要比较三种方法哪种方式更理想!

    下图是采用快速聚类的结果:

    以及kohonen神经算法的聚类结果:

    接下来我们要识别聚类结果的意义和类分析:这里我们可以采用C5.0规则来识别不同聚类的特征:

    其中Two-step两阶段聚类特征图:

    采用评估分析节点对C5.0规则的模型识别能力进行判断:

    结果还不错,我们可以分别选择三种聚类方法,或者选择一种更易解释的聚类结果,这里选择Kohonen的聚类结果将聚类字段写入数据集后,为方便我们将数据导入SPSS软件进行均值分析和输出到Excel软件!

    输出结果后将数据导入Excel,将R、F、M三个字段分类与该字段的均值进行比较,利用Excel软件的条件格式给出与均值比较的趋势!结合RFM模型魔方块的分类识别客户类型:通过RFM分析将客户群体划分成重要保持客户、重要发展客户、重要挽留客户、一般重要客户、一般客户、无价值客户等六个级别;(有可能某个级别不存在);

    另外一个考虑是针对R、F、M三个指标的标准化得分按聚类结果进行加权计算,然后进行综合得分排名,识别各个类别的客户价值水平;

    至此如果我们通过对RFM模型分析和进行的客户细分满意的话,可能分析就此结束!如果我们还有客户背景资料信息库,可以将聚类结果和RFM得分作为自变量进行其他数据挖掘建模工作!

    三、RFM模型的应用意义

    RFM模型较为动态地显示了一个客户的全部轮廓,这对个性化的沟通和服务提供了依据,同时,如果与该客户打交道的时间足够长,也能够较为精确地判断该客户的长期价值(甚至是终身价值),通过改善三项指标的状况,从而为更多的营销决策提供支持。

    在RFM模式中,R(Recency)表示客户购买的时间有多远,F(Frequency)表示客户在时间内购买的次数,M (Monetary)表示客户在时间内购买的金额。一般的分析型CRM着重在对于客户贡献度的分析,RFM则强调以客户的行为来区分客户。

    RFM非常适用于生产多种商品的企业,而且这些商品单价相对不高,如消费品、化妆品、小家电、录像带店、超市等;它也适合在一个企业内只有少数耐久商品,但是该商品中有一部分属于消耗品,如复印机、打印机、汽车维修等消耗品;RFM对于加油站、旅行保险、运输、快递、快餐店、KTV、行动电话信用卡、证券公司等也很适合。

    RFM可以用来提高客户的交易次数。业界常用的DM(直接邮寄),常常一次寄发成千上万封邮购清单,其实这是很浪费钱的。根据统计(以一般邮购日用品而言),如果将所有R(Recency)的客户分为五级,最好的第五级回函率是第四级的三倍,因为这些客户刚完成交易不久,所以会更注意同一公司的产品信息。如果用M(Monetary)来把客户分为五级,最好与次好的平均回复率,几乎没有显著差异。

    有些人会用客户绝对贡献金额来分析客户是否流失,但是绝对金额有时会曲解客户行为。因为每个商品价格可能不同,对不同产品的促销有不同的折扣,所以采用相对的分级(例如R、F、M都各分为五级)来比较消费者在级别区间的变动,则更可以显现出相对行为。企业用R、F的变化,可以推测客户消费的异动状况,根据客户流失的可能性,列出客户,再从M(消费金额)的角度来分析,就可以把重点放在贡献度高且流失机会也高的客户上,重点拜访或联系,以最有效的方式挽回更多的商机。

    RFM也不可以用过头,而造成高交易的客户不断收到信函。每一个企业应该设计一个客户接触频率规则,如购买三天或一周内应该发出一个感谢的电话或Email,并主动关心消费者是否有使用方面的问题,一个月后发出使用是否满意的询问,而三个月后则提供交叉销售的建议,并开始注意客户的流失可能性,不断地创造主动接触客户的机会。这样一来,客户再购买的机会也会大幅提高。

    企业在推行CRM时,就要根据RFM模型的原理,了解客户差异,并以此为主轴进行企业流程重建,才能创新业绩与利润。否则,将无法在新世纪的市场立足。

    银行rfm模型应用实例(rfm模型概述及应用分析)

    四、基于RFM的客户价值分析报告

    项目背景

    在面向客户制定运营策略、营销策略时,我们希望针对不同的客户推行不同的策略,实现精准化运营,以期获取最大的转化率。精准化运营的前提是客户分类。通过客户分类,对客户群体进行细分,区别出低价值客户、高价值客户,对不同的客户群体开展不同的个性化服务,将有限的资源合理地分配给不同价值的客户,实现效益最大化。在客户分类中,RFM模型是一个经典的分类模型,模型利用通用交易环节中最核心的三个维度——最近消费(Recency)、消费频率(Frequency)、消费金额(Monetary)细分客户群体,从而分析不同群体的客户价值。

    项目目标

    本项目借助某电商客户数据,探讨如何对客户群体进行细分,以及细分后如何利用RFM模型对客户价值进行分析。在本项目中,主要希望实现以下三个目标:1.借助某电商客户数据,对客户进行群体分类;2.比较各细分群体的客户价值;3.对不同价值的客户制定相应的运营策略。

    分析过程

    1.数据预览  

    我们的源数据是订单表,记录着用户交易相关字段

    通过数据可以发现,订单状态有交易成功和退款关闭的,检查是否还有其他情况

    只有这两种情况,后续清洗中需剔除退款订单。然后观察数据类型与缺失情况

    订单一共28833行,没有缺失,付款日期是时间格式,实付金额、邮费和购买数量是数值型,其他均为字符串类型

    2. 数据清洗

    (1)剔除退款

    (2)关键字段提取:提取RFM模型所需要的买家昵称,付款时间,实付金额

    (3)关键字段构造:构建模型所需的三个字段,R(最近一次购买时间间隔),F(购买频次),M(平均或累计购买金额)

    首先构造R值,思路是按买家昵称分组,选取付款日期最大值

    为了得到最终的R值,用今天减去每位用户最近一次付款时间,就得到R值了,这份订单是7月1日生成的,所以这里我们把“2019-7-1”当作“今天”

    然后处理F,即每个用户累计购买频次( 明确一下单个用户一天内购买多次订单合并为一次订单 )

    思路:引入一个精确到天的日期标签,依照“买家昵称”和“日期标签”分组,把每个用户一天内的多次下单合并,再统计购买次数

    最后处理M,本案例M指用户平均支付金额,可以通过总金额除以购买频次计算出来

    三个指标合并

    3. 维度打分 

    维度确认的核心是分值确定。RFM模型中打分一般采取5分制,依据数据和业务的理解,进行分值的划分

    R值依据行业经验,设置为30天一个跨度,区间左闭右开

    F值和购买频次挂钩,每多购买一次,分值多加一分

    M值我们按照50元的一个区间来进行划分

    这一步我们确定了一个打分框架,每一个用户的每个指标,都有其对应的分值

    4. 分值计算 

    (1)算出每个用户的R,F,M分值

    (2)简化分类结果  

    通过判断每个客户的R,F,M值是否大于平均值,来简化分类结果。0表示小于平均值,1表示大于平均值,整体组合下来有8个分组

    5.客户分层

    RFM经典分层按照R,F,M每一项指标是否高于平均值,把用户划分为8类

    Python实现思路如下:先定义一个人群数值,将之前判断的R,F,M是否大于均值的三个值加起来

    人群数值是数值类型,位于前面的0会自动略过,比如1代表001的高消费唤回客户人群,10对应010的一般客户

    然后在python中定义一个判断函数,通过判断人群数值,来返回对应的分类标签

    数据解读与建议:

    首先查看各类用户占比情况

    然后查看不同类型客户消费金额贡献占比

    最后导出数据,在tableau中数据可视化展示

    通过数据可视化后,我们可以发现:

    1.客户流失情况严重,高消费唤回客户,流失客户占比超过总客户的50%

    2.高消费唤回客户和频次深耕客户的金额总占比约66%,这两部分客户是消费的重点客户

    3.流失客户和新客户的总人数占比约38%,但金额总占比只有约13%

    建议:

    1.针对高消费唤回客户,流失客户采用唤回策略,推送相关信息,发礼品券等挽留客户

    2.针对高消费唤回客户和频次深耕客户,考虑继续挖掘其消费特性,如喜爱购买的产品,消费的时间段,后续据此加强店铺产品与时间段的改进,最大程度留住这两部分客户

    3.针对流失客户和新客户金额总占比低,建议推出一些低价产品,用来拉取新客户,保证店铺的活跃性。

    以上就是关于银行rfm模型应用实例相关问题的回答。希望能帮到你,如有更多相关问题,您也可以联系我们的客服进行咨询,客服也会为您讲解更多精彩的知识和内容。


    推荐阅读:

    怎么查询营业执照绑定的银行卡(怎么查询营业执照绑定的银行卡号码)

    杭州联合银行开户(杭州联合银行开户行行号查询)

    宁波银行杭州银行哪个更强(杭州银行和宁波银行哪个银行上班好些)

    喵呜排行榜(喵呜官方)

    输入姓名打造专属网名(名字logo免费设计)