HOME 首页
SERVICE 服务产品
XINMEITI 新媒体代运营
CASE 服务案例
NEWS 热点资讯
ABOUT 关于我们
CONTACT 联系我们
创意岭
让品牌有温度、有情感
专注品牌策划15年

    神经网络的分类过程简述(神经网络的分类过程简述)

    发布时间:2023-04-17 20:14:45     稿源: 创意岭    阅读: 58        

    大家好!今天让创意岭的小编来大家介绍下关于神经网络的分类过程简述的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。

    开始之前先推荐一个非常厉害的Ai人工智能工具,一键生成原创文章、方案、文案、工作计划、工作报告、论文、代码、作文、做题和对话答疑等等

    只需要输入关键词,就能返回你想要的内容,越精准,写出的就越详细,有微信小程序端、在线网页版、PC客户端

    官网:https://ai.de1919.com

    创意岭作为行业内优秀的企业,服务客户遍布全球各地,如需了解SEO相关业务请拨打电话175-8598-2043,或添加微信:1454722008

    本文目录:

    神经网络的分类过程简述(神经网络的分类过程简述)

    一、用最简单的神经网络做数据分类,展示神经网络训练过程

    本文用简单的神经网络做数据分类,展示神经网络训练过程,方便理解

    神经网络模型:Y = w1 x1 + w2 x2 + b

    第一步 :生成训练数据与标签

    第二步 :合并数据并将数据打乱,然后将数据转换为Paddle框架所需要的数据类型

    第三步 ,基于Paddle,构建神经网络、定义损失函数和优化器:Y = w1 x1 + w2 x2 + b

    第四步 ,构建训练过程

    最后一步 ,绘制训练结果

    二、人工神经网络有哪些类型

    人工神经网络模型主要考虑网络连接的拓扑结构、神经元的特征、学习规则等。目前,已有近40种神经网络模型,其中有反传网络、感知器、自组织映射、Hopfield网络、波耳兹曼机、适应谐振理论等。根据连接的拓扑结构,神经网络模型可以分为:

    (1)前向网络 网络中各个神经元接受前一级的输入,并输出到下一级,网络中没有反馈,可以用一个有向无环路图表示。这种网络实现信号从输入空间到输出空间的变换,它的信息处理能力来自于简单非线性函数的多次复合。网络结构简单,易于实现。反传网络是一种典型的前向网络。

    (2)反馈网络 网络内神经元间有反馈,可以用一个无向的完备图表示。这种神经网络的信息处理是状态的变换,可以用动力学系统理论处理。系统的稳定性与联想记忆功能有密切关系。Hopfield网络、波耳兹曼机均属于这种类型。

    学习是神经网络研究的一个重要内容,它的适应性是通过学习实现的。根据环境的变化,对权值进行调整,改善系统的行为。由Hebb提出的Hebb学习规则为神经网络的学习算法奠定了基础。Hebb规则认为学习过程最终发生在神经元之间的突触部位,突触的联系强度随着突触前后神经元的活动而变化。在此基础上,人们提出了各种学习规则和算法,以适应不同网络模型的需要。有效的学习算法,使得神经网络能够通过连接权值的调整,构造客观世界的内在表示,形成具有特色的信息处理方法,信息存储和处理体现在网络的连接中。

    根据学习环境不同,神经网络的学习方式可分为监督学习和非监督学习。在监督学习中,将训练样本的数据加到网络输入端,同时将相应的期望输出与网络输出相比较,得到误差信号,以此控制权值连接强度的调整,经多次训练后收敛到一个确定的权值。当样本情况发生变化时,经学习可以修改权值以适应新的环境。使用监督学习的神经网络模型有反传网络、感知器等。非监督学习时,事先不给定标准样本,直接将网络置于环境之中,学习阶段与工作阶段成为一体。此时,学习规律的变化服从连接权值的演变方程。非监督学习最简单的例子是Hebb学习规则。竞争学习规则是一个更复杂的非监督学习的例子,它是根据已建立的聚类进行权值调整。自组织映射、适应谐振理论网络等都是与竞争学习有关的典型模型。

    研究神经网络的非线性动力学性质,主要采用动力学系统理论、非线性规划理论和统计理论,来分析神经网络的演化过程和吸引子的性质,探索神经网络的协同行为和集体计算功能,了解神经信息处理机制。为了探讨神经网络在整体性和模糊性方面处理信息的可能,混沌理论的概念和方法将会发挥作用。混沌是一个相当难以精确定义的数学概念。一般而言,“混沌”是指由确定性方程描述的动力学系统中表现出的非确定性行为,或称之为确定的随机性。“确定性”是因为它由内在的原因而不是外来的噪声或干扰所产生,而“随机性”是指其不规则的、不能预测的行为,只可能用统计的方法描述。混沌动力学系统的主要特征是其状态对初始条件的灵敏依赖性,混沌反映其内在的随机性。混沌理论是指描述具有混沌行为的非线性动力学系统的基本理论、概念、方法,它把动力学系统的复杂行为理解为其自身与其在同外界进行物质、能量和信息交换过程中内在的有结构的行为,而不是外来的和偶然的行为,混沌状态是一种定态。混沌动力学系统的定态包括:静止、平稳量、周期性、准同期性和混沌解。混沌轨线是整体上稳定与局部不稳定相结合的结果,称之为奇异吸引子。

    三、人工神经网络概述(更新中)

    智能: 从感觉到记忆再到思维的过程称为“智慧”,智慧的结果是语言和行为。行为和语言予以表达称为“能力”。智慧和能力的总称为“智能”。感觉、记忆、思维、行为、语言的过程称为“智能过程”。

    人工智能: 人工构建的智能系统。

    人工智能是研究和开发用于模拟、延伸和扩展人类智能的理论、方法、技术及应用的技术学科,其主要研究内容可以归纳为以下四个方面。

    人工神经网络是基于生物神经元网络机制提出的一种计算结构,是生物神经网络的某种模拟、简化和抽象。神经元是这一网络的“节点”,即“处理单元”。

    人工神经网络可用于逼近非线性映射、分类识别、优化计算以及知识挖掘。近年来,人工神经网络在模式识别、信号处理、控制工程和优化计算领域得到了广泛的应用。

    M-P模型由心理学家McCulloch和数学家W. Pitts在1943年提出。

    M-P模型结构是一个多输入、单输出的非线性元件。其I/O关系可推述为

    其中, 表示从其他神经元传来的输入信号; 表示从神经元 到神经元 的连接权值; 表示阈值; 表示激励函数或转移函数; 表示神经元 的输出信号。

    作为一种最基本的神经元数学模型,M-P模型包括了加权、求和和激励(转移)三部分功能。

    神经元的数据模型主要区别于采用了不同的激励函数。

    概率型函数的输入和输出之间的关系是不确定的。分布律如下

    其中, 被称为温度参数。

    感知机(Perceptron)是美国学者Rosenblatt于1957年提出的一种用于模式分类的神经网络模型。

    M-P模型通常叫做单输出的感知机。按照M-P模型的要求,该人工神经元的激活函数为阶跃函数。为了方便表示,M-P模型表示为下图所示的结构。

    用多个这样的单输入感知机可以构成一个多输出的感知机,其结构如下

    对于二维平面,当输入/输出为 线性可分 集合时,一定可以找到一条直线将模式分成两类。此时感知机的结构图3所示,显然通过调整感知机的权值及阈值可以修改两类模式的分界线:

    线性可分: 这里的线性可分是指两类样本可以用直线、平面或超平面分开,否则称为线性不可分。

    感知机的基本功能是对外部信号进行感知和识别,这就是当外部 个刺激信号或来自其它 个神经元(的信号)处于一定的状态时,感知机就处于兴奋状态,而外部 个信号或 个神经元的输出处于另一个状态时,感知机就呈现抑制状态。

    如果 、 是 中两个互不相交的集合,且有如下方程成立

    则称集合 为感知机的 学习目标 。根据感知机模型,学习算法实际上是要寻找权重 、 满足下述要求:

    感知机的训练过程是感知机权值的逐步调整过程,为此,用 表示每一次调整的序号。 对应于学习开始前的初始状态,此时对应的权值为初始化值。

    四、人工神经网络的分类

    人工神经网络模型主要考虑网络连接的拓扑结构、神经元的特征、学习规则等。目前,已有近40种神经网络模型,其中有反传网络、感知器、自组织映射、Hopfield网络、波耳兹曼机、适应谐振理论等。

    ann:人工神经网络(Artificial Neural Networks)

    bp:Back Propagation网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)。

    以上就是关于神经网络的分类过程简述相关问题的回答。希望能帮到你,如有更多相关问题,您也可以联系我们的客服进行咨询,客服也会为您讲解更多精彩的知识和内容。


    推荐阅读:

    神经网络三大分类(神经网络三大分类包括)

    神经网络的基本原理(神经网络算法)

    神经网络和深度神经网络的区别(卷积神经网络和深度神经网络的区别)

    机器人分为哪几类(工业机器人分为哪几类)

    谷歌镜像2023(谷歌镜像2023入口)