HOME 首页
SERVICE 服务产品
XINMEITI 新媒体代运营
CASE 服务案例
NEWS 热点资讯
ABOUT 关于我们
CONTACT 联系我们
创意岭
让品牌有温度、有情感
专注品牌策划15年

    dnn深度神经网络原理(深度神经网络dnn是谁开发的)

    发布时间:2023-04-17 18:00:57     稿源: 创意岭    阅读: 50        

    大家好!今天让创意岭的小编来大家介绍下关于dnn深度神经网络原理的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。

    开始之前先推荐一个非常厉害的Ai人工智能工具,一键生成原创文章、方案、文案、工作计划、工作报告、论文、代码、作文、做题和对话答疑等等

    只需要输入关键词,就能返回你想要的内容,越精准,写出的就越详细,有微信小程序端、在线网页版、PC客户端

    官网:https://ai.de1919.com

    创意岭作为行业内优秀的企业,服务客户遍布全球各地,如需了解SEO相关业务请拨打电话175-8598-2043,或添加微信:1454722008

    本文目录:

    dnn深度神经网络原理(深度神经网络dnn是谁开发的)

    一、深度神经网络是什么意思?

    深度神经网络是机器学习(ML, Machine Learning)领域中一种技术。

    在监督学习中,以前的多层神经网络的问题是容易陷入局部极值点。如果训练样本足够充分覆盖未来的样本,那么学到的多层权重可以很好的用来预测新的测试样本。但是很多任务难以得到足够多的标记样本,在这种情况下,简单的模型,比如线性回归或者决策树往往能得到比多层神经网络更好的结果(更好的泛化性,更差的训练误差)。

    dnn深度神经网络原理(深度神经网络dnn是谁开发的)

    扩展资料:

    非监督学习中,以往没有有效的方法构造多层网络。多层神经网络的顶层是底层特征的高级表示,比如底层是像素点,上一层的结点可能表示横线,三角。

    而顶层可能有一个结点表示人脸。一个成功的算法应该能让生成的顶层特征最大化的代表底层的样例。如果对所有层同时训练,时间复杂度会太高; 如果每次训练一层,偏差就会逐层传递。这会面临跟上面监督学习中相反的问题,会严重欠拟合。

    二、一文搞懂DNN反向传播!

    本文主要整理自下面的几篇博客:

    1、深度神经网络(DNN)反向传播算法(BP): https://www.cnblogs.com/pinard/p/6422831.html

    2、机器学习中的矩阵、向量求导。 https://download.csdn.net/download/weixin_42074867/10405246

    1、推导BPNN前需要了解的矩阵求导知识

    1.1 矩阵/向量值函数对实数的导数

    1.2 实值函数对矩阵/向量的导数

    1.3 向量值函数对向量的求导(雅可比矩阵)

    1.4 变量多次出现的求导法则

    规则:若在函数表达式中,某个变量出现了多次,可以单独计算函数对自变量的每一次出现的导数,再把结果加起来。

    1.5 向量求导的链式法则

    1.6 一一对应关系下的矩阵求导

    1.7 几个重要的结论

    掌握了上面的一些基本知识之后,我们就可以顺利推导出神经网络的反向传播算法。

    2、反向传播的推导

    具体的推导过程可以参考文章开头给出的博客,下图是我手动推导的过程:

    赞赏支持

    链接:https://www.jianshu.com/p/ee08ed75844b

    来源:

    三、卷积神经网络和深度神经网络的区别是什么

    没有卷积神经网络的说法,只有卷积核的说法。

    电脑图像处理的真正价值在于:一旦图像存储在电脑上,就可以对图像进行各种有效的处理。如减小像素的颜色值,可以解决曝光过度的问题,模糊的图像也可以进行锐化处理,清晰的图像可以使用模糊处理模拟摄像机滤色镜产生的柔和效果。

    用Photoshop等图像处理软件,施展的魔法几乎是无止境的。四种基本图像处理效果是模糊、锐化、浮雕和水彩。ß这些效果是不难实现的,它们的奥妙部分是一个称为卷积核的小矩阵。这个3*3的核含有九个系数。为了变换图像中的一个像素,首先用卷积核中心的系数乘以这个像素值,再用卷积核中其它八个系数分别乘以像素周围的八个像素,最后把这九个乘积相加,结果作为这个像素的值。对图像中的每个像素都重复这一过程,对图像进行了过滤。采用不同的卷积核,就可以得到不同的处理效果。ß用PhotoshopCS6,可以很方便地对图像进行处理。

    模糊处理——模糊的卷积核由一组系数构成,每个系数都小于1,但它们的和恰好等于1,每个像素都吸收了周围像素的颜色,每个像素的颜色分散给了它周围的像素,最后得到的图像中,一些刺目的边缘变得柔和。

    锐化卷积核中心的系数大于1,周围八个系数和的绝对值比中间系数小1,这将扩大一个像素与之周围像素颜色之间的差异,最后得到的图像比原来的图像更清晰。

    浮雕卷积核中的系数累加和等于零,背景像素的值为零,非背景像素的值为非零值。照片上的图案好像金属表面的浮雕一样,轮廓似乎凸出于其表面。

    要进行水彩处理,首先要对图像中的色彩进行平滑处理,把每个像素的颜色值和它周围的二十四个相邻的像素颜色值放在一个表中,然后由小到大排序,把表中间的一个颜色值作为这个像素的颜色值。然后用锐化卷积核对图像中的每个像素进行处理,以使得轮廓更加突出,最后得到的图像很像一幅水彩画。

    我们把一些图像处理技术结合起来使用,就能产生一些不常见的光学效果,例如光晕等等。

    希望我能帮助你解疑释惑。

    四、CNN、RNN、DNN的内部网络结构有什么区别?

    从广义上来说,NN(或是更美的DNN)确实可以认为包含了CNN、RNN这些具体的变种形式。在实际应用中,所谓的深度神经网络DNN,往往融合了多种已知的结构,包括卷积层或是LSTM单元。但是就题主的意思来看,这里的DNN应该特指全连接的神经元结构,并不包含卷积单元或是时间上的关联。

    因此,题主一定要将DNN、CNN、RNN等进行对比,也未尝不可。其实,如果我们顺着神经网络技术发展的脉络,就很容易弄清这几种网络结构发明的初衷,和他们之间本质的区别。神经网络技术起源于上世纪五、六十年代,当时叫感知机(perceptron),拥有输入层、输出层和一个隐含层。输入的特征向量通过隐含层变换达到输出层,在输出层得到分类结果。

    早期感知机的推动者是Rosenblatt。(扯一个不相关的:由于计算技术的落后,当时感知器传输函数是用线拉动变阻器改变电阻的方法机械实现的,脑补一下科学家们扯着密密麻麻的导线的样子…)但是,Rosenblatt的单层感知机有一个严重得不能再严重的问题,即它对稍复杂一些的函数都无能为力(比如最为典型的“异或”操作)。

    连异或都不能拟合,你还能指望这货有什么实际用途么。随着数学的发展,这个缺点直到上世纪八十年代才被Rumelhart、Williams、Hinton、LeCun等人(反正就是一票大牛)发明的多层感知机(multilayer perceptron)克服。多层感知机,顾名思义,就是有多个隐含层的感知机。

    dnn深度神经网络原理(深度神经网络dnn是谁开发的)

    以上就是关于dnn深度神经网络原理相关问题的回答。希望能帮到你,如有更多相关问题,您也可以联系我们的客服进行咨询,客服也会为您讲解更多精彩的知识和内容。


    推荐阅读:

    dnf85史诗套装排行榜

    dn样机可以转ps吗(dn样机导入模型)

    dnf魔法石排行榜(dnf魔法石排名)

    护林直播成为山(护林直播成为山神)

    怎么把wechat改成微信(wechat 如何改成微信)