游戏用户数据分析(游戏用户数据分析报告)
大家好!今天让创意岭的小编来大家介绍下关于游戏用户数据分析的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。
开始之前先推荐一个非常厉害的Ai人工智能工具,一键生成原创文章、方案、文案、工作计划、工作报告、论文、代码、作文、做题和对话答疑等等
只需要输入关键词,就能返回你想要的内容,越精准,写出的就越详细,有微信小程序端、在线网页版、PC客户端
创意岭作为行业内优秀的企业,服务客户遍布全球各地,如需了解SEO相关业务请拨打电话175-8598-2043,或添加微信:1454722008
本文目录:
一、《游戏数据分析的艺术》txt下载在线阅读全文,求百度网盘云资源
《游戏数据分析的艺术》(于洋/余敏雄/吴娜/师胜柱)电子书网盘下载免费在线阅读
链接:
书名:《游戏数据分析的艺术》
作者:于洋/余敏雄/吴娜/师胜柱
译者:
豆瓣评分:7.0
出版社:机械工业出版社
出版年份:2015-7
页数:409
内容简介:《游戏数据分析的艺术》是中国游戏产业的开创性著作,具有里程碑意义,它首次系统讲解了如何对游戏行业的数据进行分析,在行业里竖起了一根标杆。作者是来自TalkingData等国内顶尖的数据分析机构和西山居这样的知名游戏公司的资深数据分析专家, 对游戏数据从不同的业务角度进行了诠释。本书详细剖析了游戏数据分析相关的指标、方法论、内容挖掘、数据挖掘、软件使用、游戏设计、运营策划、渠道推广、收入解读、用户分析和留存分析等。对于产品设计、开发、运营、推广以及游戏行业的人才培养都将带来巨大的推进作用。
《游戏数据分析的艺术》一共12章:
第1章从宏观上介绍了游戏数据分析的重要意义、方法论、流程,以及游戏数据分析师的定位;
第2章详细解读了游戏数据分析的各项数据指标,部分指标在游戏行业里都属于首次提出,为行业建立了规范;
第3章详细讲解和示范了各种游戏数据报表的制作方法;
第4章讲解了基于统计学的数据分析方法以及它在游戏数据分析中的应用;
第5~9章详细地、全方位地讲解了游戏的用户数据分析、运营数据分析、收入数据分析、渠道数据分析、内容数据分析,不仅有方法论和技巧,而且有大量的实际案例,这部分内容是本书的核心;
第10~12章讲解了R语言的核心技术以及如何利用R语言对游戏数据进行分析,同时也附有大量案例。
作者简介:于洋 TalkingData 高级咨询总监,主导TalkingData University 计划。曾在金山软件公司任职游戏数据分析师,从事游戏及移动应用数据分析、产品数据体验优化、金融机构运营及数据培训。先后服务于多家银行、保险、证券、移动运营商、移动互联网公司。小白学数据分析专栏作者,撰写第一本《移动游戏数据运营指标白皮书》和《移动应用数据指标白皮书》,运营学分析(www.xuefenxi.com)及www.ianalysis.cn网站。
余敏雄 金山软件公司西山居数据中心数据分析专家,从事游戏数据挖掘和数据化运营分析多年,研究领域包括大型端游、页游以及移动游戏,拥有贯穿游戏立项、研发、测试、正式运营和稳定运营整个游戏生命周期各个阶段的丰富经验。主要关注统计分析与数据挖掘在游戏行业的实践应用,如游戏用户行为预测、推荐系统、反作弊、用户研究、社交网络与交易网络分析等,是游戏行业数据化运营的倡导者与践行者,同时是中国统计网数据分析培训师,在企业员工培训中也拥有丰富经验。
吴娜 曾服务于久游游戏和中国移动集团等公司,现担任电信集团互联网数据挖掘工程师,因其丰富的市场运营和数据分析工作经验,能准确有效定位业务问题和数据方法论,精通数理统计、常用编程语言、常用数据挖掘工具和Hadoop分布式平台,现于上海交通大学计算机系就读研究生,研究方向互联网金融。
师胜柱 就职于中国最大的安卓游戏渠道360手机游戏,担任战略分析师。曾担任TalkingData高级咨询顾问以及上海中软国际Windows技术支持工程师。在TalkingData期间主攻游戏数据分析、游戏运营以及移动游戏市场的分析工作。为多款游戏撰写深度评测分析、产品体验优化报告以及专题数据分析报告等。学分析论坛(www.xuefenxi.com),爱分析微信公众账号(i-analysis)以及移动数据分析博客(www.ianalysis.cn)的创办者。
二、《游戏数据分析的艺术》epub下载在线阅读,求百度网盘云资源
《游戏数据分析的艺术》(于洋)电子书网盘下载免费在线阅读
资源链接:
链接:https://pan.baidu.com/s/1SBkWfzzSiC8arwcLd3C82g
书名:游戏数据分析的艺术
作者:于洋
豆瓣评分:7.0
出版社:机械工业出版社
出版年份:2015-7
页数:409
内容简介:
《游戏数据分析的艺术》是中国游戏产业的开创性著作,具有里程碑意义,它首次系统讲解了如何对游戏行业的数据进行分析,在行业里竖起了一根标杆。作者是来自TalkingData等国内顶尖的数据分析机构和西山居这样的知名游戏公司的资深数据分析专家, 对游戏数据从不同的业务角度进行了诠释。本书详细剖析了游戏数据分析相关的指标、方法论、内容挖掘、数据挖掘、软件使用、游戏设计、运营策划、渠道推广、收入解读、用户分析和留存分析等。对于产品设计、开发、运营、推广以及游戏行业的人才培养都将带来巨大的推进作用。
《游戏数据分析的艺术》一共12章:
第1章从宏观上介绍了游戏数据分析的重要意义、方法论、流程,以及游戏数据分析师的定位;
第2章详细解读了游戏数据分析的各项数据指标,部分指标在游戏行业里都属于首次提出,为行业建立了规范;
第3章详细讲解和示范了各种游戏数据报表的制作方法;
第4章讲解了基于统计学的数据分析方法以及它在游戏数据分析中的应用;
第5~9章详细地、全方位地讲解了游戏的用户数据分析、运营数据分析、收入数据分析、渠道数据分析、内容数据分析,不仅有方法论和技巧,而且有大量的实际案例,这部分内容是本书的核心;
第10~12章讲解了R语言的核心技术以及如何利用R语言对游戏数据进行分析,同时也附有大量案例。
作者简介:
于洋 TalkingData 高级咨询总监,主导TalkingData University 计划。曾在金山软件公司任职游戏数据分析师,从事游戏及移动应用数据分析、产品数据体验优化、金融机构运营及数据培训。先后服务于多家银行、保险、证券、移动运营商、移动互联网公司。
余敏雄 金山软件公司西山居数据中心数据分析专家,从事游戏数据挖掘和数据化运营分析多年,研究领域包括大型端游、页游以及移动游戏,拥有贯穿游戏立项、研发、测试、正式运营和稳定运营整个游戏生命周期各个阶段的丰富经验。主要关注统计分析与数据挖掘在游戏行业的实践应用,如游戏用户行为预测、推荐系统、反作弊、用户研究、社交网络与交易网络分析等,是游戏行业数据化运营的倡导者与践行者,同时是中国统计网数据分析培训师,在企业员工培训中也拥有丰富经验。
吴娜 曾服务于久游游戏和中国移动集团等公司,现担任电信集团互联网数据挖掘工程师,因其丰富的市场运营和数据分析工作经验,能准确有效定位业务问题和数据方法论,精通数理统计、常用编程语言、常用数据挖掘工具和Hadoop分布式平台,现于上海交通大学计算机系就读研究生,研究方向互联网金融。
师胜柱 就职于中国最大的安卓游戏渠道360手机游戏,担任战略分析师。曾担任TalkingData高级咨询顾问以及上海中软国际Windows技术支持工程师。在TalkingData期间主攻游戏数据分析、游戏运营以及移动游戏市场的分析工作。为多款游戏撰写深度评测分析、产品体验优化报告以及专题数据分析报告等。
三、数据分析报告的
数据分析报告是通过对项目数据全方位的科学分析来评估项目的可行性,为投资方决策项目提供科学、严谨的依据,降低项目投资的风险。数据分析报告的模板应该怎么写?
数据分析报告的模板篇一:
中国拥有世界上最为庞大的青少年人口群体。统计表明,20xx年中国14~35岁人口有4.65亿,占总人口的36.25%。对于任何社会来说,青少年都是民族的未来与希望。中国社会正处于改革开放的时代,现在的青少年是变革的弄潮儿、受益者和风险承担者,他们正在经历着我国社会经济等方面的重大变革,发展变化的速度很快。客观、准确地了解和掌握青少年的现状,才能从实际出发,制定有效的政策,从而正确引导青少年,把青少年一代培养成为有理想、有道德、有文化、有纪律的社会主义新人。本报告主要是依据统计数据对近年来中国青少年发展状况进行分析,所采用的数据均为撰写本报告时(截至20xx年7月31日)中国青少年发展状况指标体系中各项指标所能获得的最新数据。在本报告中青少年采用14~29岁和14~35岁两种年龄统计口径。
青少年人口状况指标
1.青少年人口总数及比重
20xx年人口变动抽样调查数据显示,全国14~29岁青少年共有311,217,923人,占总人口的24.25%。其中男性158,338,086 人,女性152,879,837人,分别占总人口的12.34%和11.91%,性别比为103.57。14~35岁青少年共有465,259,674 人,占总人口的36.25%。其中男性235,453,157人,女性229,806,517人,分别占总人口的18.34%和17.90%,性别比为 102.46。
2.青少年人口性别年龄构成
分性别年龄结构反映的是男女不同性别人口的年龄分布情况。20xx年中国青少年分性别人口的年龄分布基本一致,无论是男性还是女性,在其总人口中都是30~35岁人口所占比例最高,其次是14~20岁人口。人口年龄结构在20~30岁之间出现凹陷,除了自然的人口变动规律(如受人口惯性发展的影响)以外,与该年龄人群的漏报也有较大关系。因为这一年龄段人群处于流动活跃时期,而流动人口的漏报是统计中很难避免的。同时,我国军人也主要集中在这个年龄段,而军人人数是不在统计数据中反映的,这也加大了凹陷的程度。
3.青少年人口分布状况
人口的分布状况主要由地区构成和城乡构成两项指标来衡量。20xx年第五次人口普查时,14~29岁的青少年人口广东省为最多,达2900万人,西藏最少,仅为82万人。各省市青少年占总人口的比重集中在24.01~34.03%区间范围内,广东省比重最高,达34.03%,最低的为江苏省,占 24.01%。14~35岁的青少年人口数分布与14~29岁的青少年人口数分布接近,比重略有差异。各省之间青少年人口差异与各省总人口和它们过去的生育率、死亡率、迁移率的变化都有密切关系。
20xx年14~29岁青少年人口31,122万人,居住在城市的有7817万人,占青少年人口的25.12%,居住在镇的有4718万人,占 15.16%,居住在乡的有18,587万人,占59.72%。14~29岁青少年人口城镇化水平40.28%略低于我国40.53%的城镇化水平。 14~35岁青少年人口46,526万人,居住在城市的有12,165万人,占青少年人口的26.15%,居住在镇的有7234万人,占15.55%,居住在乡的'有27,127万人,占58.31%。14~35岁青少年人口城镇化水平41.69%又略高于全国平均水平。
4.青少年人口的迁移
20xx年第五次人口普查时,我国迁移人口有12,466,250人,其中14~29岁6,749,193人,占迁移总人口的54.14%,14~35岁8,396,246人,占迁移总人口的67.35%。迁移原因以务工经商、学习培训、婚姻迁入为主,占迁移总人口的七成之多(见图1-3a和图1-3b)。从全国迁移情况来看,学习培训、分配录用、婚姻迁入、务工经商主要是以青年人口为主,均占80%以上。
5.青少年人口的受教育状况
随着我国社会经济的发展,受教育程度普遍提高,14~29岁青少年人口有98.33%受过小学以上教育,14~35岁青少年人口比例略低一点 (97.14%),但仍以初中教育程度为主,分别占55.13%和50.34%。这与青少年正处于学习求知年龄不无关系。从全国总人口受教育情况来看,青少年人口受教育程度明显好于其他年龄人口,初中以上各级文化程度人口中,14~29岁人口基本占40%左右,14~35岁人口基本占60%左右。
6.青年人口的婚姻状况
青年人正处于组建家庭时期,15~29岁青年未婚人口占64.03%,有配偶占35.53%,随着年龄的增长,有配偶的比例逐渐增大,15~35岁青年未婚人口占43.36%,有配偶占55.02%。青年人口婚姻关系比较稳定,无论是在15~29岁青年人口中还是在15~35岁青年人口中,丧偶、离婚和再婚有配偶的比例都非常低,分别为0.7%和1.62%。
7.青年人口生育状况
青年人口不同于老年人口和少年儿童人口,随着其生理和心理的发育成熟,开始组建家庭哺育后代。从生育的年龄分布来看,青年正处于生育高峰期。根据20xx年全国人口变动抽样调查数据计算,全国一般生育率为38.01‰,总和生育率为1.4‰,29岁组累计生育率为1164.79‰,35岁组累计生育率为1375.93‰。
8.青少年人口死亡状况
青少年人口处于风华正茂、生命力旺盛、死亡率水平最低时期。青年人口死亡率随着年龄的增长略有增长,但增长幅度不大,基本在0.28~1.38‰的小区间范围内波动增长。根据20xx年全国人口变动抽样调查数据计算,全国死亡率水平为6.05‰,青少年人口死亡率远远低于全国平均水平,14~29岁的死亡率仅为0.85‰,14~35岁的死亡率为0.95‰。
9.青年人口的民族状况
我国是一个多民族国家,在960万平方公里土地上居住着56个民族,每个民族都有自己的青少年人口。20xx年第五次人口普查时,汉族仍是我国的主体民族,14~29岁青少年人口中有90.58%为汉族, 9.42%为少数民族;14~35岁青少年人口中汉族比例略高,为91.09%,少数民族占 8.91%。少数民族中壮族、满族、回族、维吾尔族、苗族、彝族、土家族、蒙古族、藏族人数最多,人口比例均占0.5%以上。
数据分析报告的模板篇二:
一、20xx年手游市场基本概况
1、20xx年中国游戏市场份额分布:客户端游戏仍是游戏市场主导,移动游戏暂时无法取代。
2、20xx年移动游戏用户规模:20xx年年底,手机游戏用户规模超过5亿,近半数中国人在玩手游
3、20xx年移动游戏市场实际销售收入:20xx年移动游戏销售收入超过20xx,销售收入是20xx年的2倍以上
4、20xx年手机游戏各类型占比分布:休闲游戏数量超过6成
5、各游戏类型留存率水平:动作类游戏留存率最高
二、用户行为透析
1、端游与手游之间用户重合度分析:端游与手游用户重合度达到26.3%,端游用户转化为手游用户的空间较大
2、20xx年智能移动游戏操作系统分析:安卓成手机游戏主要操作系统,苹果手机用户更愿意花钱玩游戏
3、玩家付费行为分析:休闲射击类游戏付费人数多,重度手游单次付费金额较高
4、玩家付费时间分析:玩家的付费高峰习惯趋于稳定,付费高峰发生在午饭后和晚上睡觉前
5、支付方式对比:61%玩家首选支付宝
三、地域分布
1、60%手游用户聚集在三线城市,三线城市成手游蓝海市场
2、各游戏类型下载量占比最高的城市分布
四、手游发展趋势预测
1、手机游戏重度化、端游化
2、端游IP手游化
3、支付方式、支付渠道的变革。
四、如何对游戏的数据进行分析?
游戏后台会自动根据你在游戏中的表现如造成伤害,承受伤害,所占经济,参团比例等进行分析,从而给出你的局内表现
以上就是关于游戏用户数据分析相关问题的回答。希望能帮到你,如有更多相关问题,您也可以联系我们的客服进行咨询,客服也会为您讲解更多精彩的知识和内容。
推荐阅读: