HOME 首页
SERVICE 服务产品
XINMEITI 新媒体代运营
CASE 服务案例
NEWS 热点资讯
ABOUT 关于我们
CONTACT 联系我们
创意岭
让品牌有温度、有情感
专注品牌策划15年

    智能优化算法的应用领域(智能优化算法的应用领域包括)

    发布时间:2023-04-14 15:11:41     稿源: 创意岭    阅读: 86        

    大家好!今天让创意岭的小编来大家介绍下关于智能优化算法的应用领域的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。

    开始之前先推荐一个非常厉害的Ai人工智能工具,一键生成原创文章、方案、文案、工作计划、工作报告、论文、代码、作文、做题和对话答疑等等

    只需要输入关键词,就能返回你想要的内容,越精准,写出的就越详细,有微信小程序端、在线网页版、PC客户端

    官网:https://ai.de1919.com

    创意岭作为行业内优秀的企业,服务客户遍布全球各地,如需了解SEO相关业务请拨打电话175-8598-2043,或添加微信:1454722008

    本文目录:

    智能优化算法的应用领域(智能优化算法的应用领域包括)

    一、智能优化算法解决了哪些问题

    主要解决了np难问题。即通过一般方法可以得到最优解,但是整个求解过程非常复杂或者漫长,此时次优解可以通过一些智能优化方法简单得出,虽不是最优解,但是我们对所求结果还是很满意的,智能优化算法就是解决这类问题的。

    二、人工智能的应用领域有哪些?

    人工智能行业主要上市公司:目前国内人工智能行业的上市公司主要有百度百度(BAIDU)、腾讯(TCTZF)、阿里巴巴(BABA)、科大讯飞(002230)等。

    本文核心数据:中国人工智能产业核心产业规模,人工智能产业核心产业规模,人工智能产业链应用层,中国人工智能市场应用份额,人工智能在各行业中的应用情况

    1、 核心产业和带动产业双双高速增长

    相比于互联网产业,我国人工智能发展期与成熟期迎来的较晚,但是在资本和社会期望的驱动下,我国人工智能发展的速度也是非常快的。初步估计2020年我国的人工智能核心产业规模达到1512.5亿元,增长率为38.94%。

    智能优化算法的应用领域(智能优化算法的应用领域包括)

    除了核心产业的增长外,人工智能带动产业而规模也呈现出快速增长区趋势。2019年我国人工智能带动产业从而规模为38521.5亿元,初步估计2020年达到5725.7亿元,同比增长高达49.83%。

    智能优化算法的应用领域(智能优化算法的应用领域包括)

    2、人工智能发展快速主要由于应用产业广泛

    人工智能发展快速主要由于应用产业广泛。从产业链的结构来看,在人工智能应用层设计的行业非常的多。软件方面的涉及主要有客服、金融、教育;硬件类主要包含无人机,仓储物流、智能机器人等;还有软硬件均为核心技术的无人驾驶和医疗健康产业。

    智能优化算法的应用领域(智能优化算法的应用领域包括)

    从客户来看,中国人工智能市场主要客户来自政府城市治理和运营(公安、交警、司法、城市运营、政务、交运管理、国土资源、监所、环保等),应用占比达到49%,互联网与金融行业紧随其后,占比分别为18%和12%。

    智能优化算法的应用领域(智能优化算法的应用领域包括)

    企业和政府对人工智能的应用逐渐升温。在决定企业产生经济效益的各个环节,都已能够看到人工智能的身影:AI 核身帮助人们安全生活、远程交易、便捷通行;深度学习和知识图谱帮助企业在生产过程中分析预测、科学决策;人机对话提升了拜访登记、服务响应中的用户体验。人工智能将催生新技术、新产品、新产业、新业态、新模式,实现社会生产力的整体跃升,推动社会进入智能经济时代。

    前瞻估算,目前中国大型企业基本都已在持续规划投入实施人工智能项目,而全部规上企业中约有超过10%的企业已将人工智能与其主营业务结合,实现产业地位提高或经营效益优化。

    智能优化算法的应用领域(智能优化算法的应用领域包括)

    三、智能优化算法:生物地理学优化算法

    @[toc]

    摘要:Alfred Wallace和Charles Darwin在19世纪提出了生物地理学理论,研究生物物种栖息地的分布、迁移和灭绝规律。Simon受到生物地理学理论的启发,在对生物物种迁移数学模型的研究基础上,于 2008年提出了一种新的智能优化算法 — 生物地理学优化算法(Biogeography-Based Optimization,BBO)。BBO算法是一种基于生物地理学理论的新型算法,具有良好的收敛性和稳定性,受到越来越多学者的关注。

    BO算法的基本思想来源于生物地理学理论。如图1所示,生物物种生活在多个栖息地(Habitat)上,每个栖息地用栖息适宜指数(Habitat Suitability Index,HSI)表示,与HSI相关的因素有降雨量、植被多样性、地貌特征、土地面积、温度和湿度等,将其称为适宜指数变量(Suitability Index Variables,SIV)。

    HSI是影响栖息地上物种分布和迁移的重要因素之一。较高 HSI的栖息地物种种类多;反之,较低 HSI的栖息地物种种类少。可见,栖息地的HSI与生物多样性成正比。高 HSI的栖息地由于生存空间趋于饱和等

    问题会有大量物种迁出到相邻栖息地,并伴有少量物种迁入;而低 HSI的栖息地其物种数量较少,会有较多物种的迁入和较少物种的迁出。但是,当某一栖息地HSI一直保持较低水平时,则该栖息地上的物种会趋于灭绝,或寻找另外的栖息地,也就是突变。迁移和突变是BBO算法的两个重要操作。栖息地之间通过迁移和突变操作,增强物种间信息的交换与共享,提高物种的多样性。

    BBO算法具有一般进化算法简单有效的特性,与其他进化算法具有类似特点。

    (1)栖息适宜指数HSI表示优化问题的适应度函数值,类似于遗传算法中的适应度函数。HSI是评价解集好坏的标准。

    (2)栖息地表示候选解,适宜指数变量 SIV 表示解的特征,类似于遗传算法中的“基因”。

    (3)栖息地的迁入和迁出机制提供了解集中信息交换机制。高 HSI的解以一定的迁出率将信息共享给低HSI的解。

    (4)栖息地会根据物种数量进行突变操作,提高种群多样性,使得算法具有较强的自适应能力。

    BBO算法的具体流程为:

    步骤1 初始化BBO算法参数,包括栖息地数量 、迁入率最大值 和迁出率最大值 、最大突变率 等参数。

    步骤2 初始化栖息地,对每个栖息地及物种进行随机或者启发式初始化。

    步骤3 计算每个栖息地的适宜指数HSI;判断是否满足停止准则,如果满足就停止,输出最优解;否则转步骤4。

    步骤4 执行迁移操作,对每个栖息地计算其迁入率和迁出率,对SIV进行修改,重新计算适宜指数HSI。

    步骤5 执行突变操作,根据突变算子更新栖息地物种,重新计算适宜指数HSI。

    步骤6 转到步骤3进行下一次迭代。

    1.1 迁移操作

    如图2所示,该模型为单个栖息地的物种迁移模型。

    横坐标为栖息地种群数量 S ,纵坐标为迁移比率 η,λ(s) 和 μ(s) 分别为种群数量的迁入率和迁出率。当种群数量为 0 时,种群的迁出率 μ(s) 为 0,种群的迁入率λ(s) 最大;当种群数量达到 S max 时,种群的迁入率 λ(s)为0,种群迁出率 u(s) 达到最大。当种群数量为 S 0 时,迁出率和迁入率相等,此时达到动态平衡状态。根据图2,得出迁入率和迁出率为:

    迁移操作的步骤可以描述为:

    Step1:for i= 1 to N do

    Step2: 用迁入率 选取

    Step3: if (0,1)之间的均匀随机数小于 then

    Step4: for j= 1 to N do

    Step5: 用迁出率 选取

    Step6: if (0,1)之间的均匀随机数小于 then

    Step7: 从 中随机选取一个变量SIV

    Step8: 用SIV替换 中的一个随机SIV

    Step9: end if

    Step10: end for

    Step11: end if

    Step12:end for

    1.2 突变(Mutation)操作

    突变操作是模拟栖息地生态环境的突变,改变栖息地物种的数量,为栖息地提供物种的多样性,为算法提供更多的搜索目标。栖息地的突变概率与其物种数量概率成反比。即

    其中: 为最大突变率; 为栖息地中物种数量为 对应的概率; 为 的最大值; 是栖息地中物种数量为 对应的突变概率。

    突变操作的步骤可以描述为:

    Step1:for i= 1 to N do

    Step2: 计算突变概率

    Step3: 用突变概率 选取一个变量

    Step4: if (0,1)之间的均匀随机数小于 then

    Step5: 随机一个变量代替 中的SIV

    Step6: end if

    Step7:end for

    [1] Simon D.Biogeography-based optimization[J].IEEE Trans-

    actions on Evolutionary Computation,2008(6):702-713.

    [2]张国辉,聂黎,张利平.生物地理学优化算法理论及其应用研究综述[J].计算机工程与应用,2015,51(03):12-17.

    https://mianbaoduo.com/o/bread/aJqZmZ8=

    https://mianbaoduo.com/o/bread/YZaXmJpq

    四、智能优化算法:人工蜂群算法

    @[toc]

    摘要:人工蜂群算法(artificial bee colony,ABC)是由土耳其学者Karaboga 于 2005 年提出,它是模拟蜜蜂的采蜜行为来解决生活中一些多维和多模的优化问题,它最初应用于数值优化问题,自提出以来受到了众多学者极大的关注,并广泛应用到神经网络、数据挖掘、工程应用、图像识别等多个领域。

    在 ABC 算法里,用蜜源的位置来表示解,用蜜源的花粉数量表示解的适应值。所有的蜜蜂划分为雇佣蜂、跟随蜂、探索蜂三组。雇佣蜂和跟随蜂各占蜂群总数的一半。雇佣蜂负责最初的寻找蜜源并采蜜分享信息,跟随蜂负责呆在蜂巢里根据雇佣蜂提供的信息去采蜜,探索蜂在原有蜜源被抛弃后负责随机寻找新的蜜源来替换原有的蜜源。与其他群智能算法一样,ABC 算法是迭代的。对蜂群和蜜源的初始化后,反复执行三个过程,即雇佣蜂、跟随蜂、探索蜂阶段,来寻找问题的最优解。每个阶段描述如下:

    对 ABC 算法的参数进行初始化,这些参数有蜜源数 、蜜源确定被抛弃的次数 、迭代终止次数。在标准 ABC 算法里,蜜源的数目 与雇佣蜂数相等,也与跟随蜂数相等。产生某个蜜源的公式为:

    其中: 代表第 个蜜源 的第 维度值, 取值于 , 取值于 ; 和 分别代表第 维的最小值和最大值。初始化蜜源就是对每个蜜源的所有维度通过以上公式赋一个在取值范围内的随机值,从而随机生成 个最初蜜源。

    在雇佣蜂阶段,雇佣蜂用以下公式来寻找新蜜源:

    其中: 代表邻域蜜源, 取值于 ,且 不等于 ; 是取值在[-1,1]的随机数,通过式(2)得到新蜜源后,利用贪婪算法,比较新旧蜜源适应值,选择优者。

    雇佣蜂阶段结束,跟随蜂阶段开始。在该阶段,雇佣蜂在舞蹈区分享蜜源信息。跟随蜂分析这些信息,采用轮盘赌策略来选择蜜源跟踪开采,以保证适应值更高的蜜源开采的概率更大。跟随蜂开采过程与雇佣蜂一样,利用式(2)找寻新蜜源,并留下更优适应者。

    蜜源拥有参数 ,当蜜源更新被保留时, 为 0;反之, 加 1。从而 能统计出一个蜜源没有被更新的次数。

    如果一个蜜源经过多次开采没被更新,也就是 值过高,超过了预定阈值 ,那么需抛弃这个蜜源,启动探索蜂阶段。这体现了 ABC 里自组织的负反馈和波动属性 。在该阶段里,探索蜂利用式(3)随机寻找新的蜜源来代替被抛弃蜜源。

    人工蜂群算法流程

    step1.初始化算法参数,生成蜜蜂初始位置

    step2.雇佣蜂计算适应度值,比较并保存最优值

    step3.跟随蜂选择雇佣蜂更新蜜源位置,计算适应度值,保存最佳值

    step4.若有侦察蜂出现,则重新生成初始位置并执行更新选优,否则继续执行step5

    step5.若迭代次数小于预设的迭代次数,则转到step2;否则输出最优解

    [1]何尧,刘建华,杨荣华.人工蜂群算法研究综述[J].计算机应用研究,2018,35(05):1281-1286.

    https://mianbaoduo.com/o/bread/aJWVkps=

    https://mianbaoduo.com/o/bread/YZWalJxr

    以上就是关于智能优化算法的应用领域相关问题的回答。希望能帮到你,如有更多相关问题,您也可以联系我们的客服进行咨询,客服也会为您讲解更多精彩的知识和内容。


    推荐阅读:

    杭州智爱人工智能科技(杭州智爱人工智能科技公司)

    人工智能培训(人工智能培训优达学城)

    人工智能一种现代的方法第三版答案(人工智能一种现代的方法第三版答案网盘资源)

    注册美区PayPal(注册美区PayPal传中国身份证)

    站长工具权重多久更新一次(站长权重是什么意思)