HOME 首页
SERVICE 服务产品
XINMEITI 新媒体代运营
CASE 服务案例
NEWS 热点资讯
ABOUT 关于我们
CONTACT 联系我们
创意岭
让品牌有温度、有情感
专注品牌策划15年

    灰狼优化算法应用(灰狼优化算法应用)

    发布时间:2023-04-14 10:10:06     稿源: 创意岭    阅读: 132        

    大家好!今天让创意岭的小编来大家介绍下关于灰狼优化算法应用的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。

    开始之前先推荐一个非常厉害的Ai人工智能工具,一键生成原创文章、方案、文案、工作计划、工作报告、论文、代码、作文、做题和对话答疑等等

    只需要输入关键词,就能返回你想要的内容,越精准,写出的就越详细,有微信小程序端、在线网页版、PC客户端

    官网:https://ai.de1919.com

    创意岭作为行业内优秀的企业,服务客户遍布全球各地,如需了解SEO相关业务请拨打电话175-8598-2043,或添加微信:1454722008

    本文目录:

    灰狼优化算法应用(灰狼优化算法应用)

    一、优化算法笔记(一)优化算法的介绍

    (以下描述,均不是学术用语,仅供大家快乐的阅读)

            我们常见常用的算法有排序算法,字符串遍历算法,寻路算法等。这些算法都是为了解决特定的问题而被提出。

            算法本质是一种按照固定步骤执行的过程。

            优化算法也是这样一种过程,是一种根据概率按照固定步骤寻求问题的最优解的过程。与常见的排序算法、寻路算法不同的是,优化算法不具备等幂性,是一种 概率算法 。算法不断的 迭代 执行同一步骤直到结束,其流程如下图。

            等幂性即 对于同样的输入,输出是相同的 。

            比如图1,对于给定的鱼和给定的熊掌,我们在相同的条件下一定可以知道它们谁更重,当然,相同的条件是指鱼和熊掌处于相同的重力作用下,且不用考虑水分流失的影响。在这些给定的条件下,我们(无论是谁)都将得出相同的结论,鱼更重或者熊掌更重。我们可以认为,秤是一个等幂性的算法(工具)。

            现在把问题变一变,问鱼与熊掌你更爱哪个,那么现在,这个问题,每个人的答案可能不会一样,鱼与熊掌各有所爱。说明喜爱这个算法不是一个等幂性算法。当然你可能会问,哪个更重,和更喜欢哪个这两个问题一个是客观问题,一个是主观问题,主观问题没有确切的答案的。当我们处理主观问题时,也会将其转换成客观问题,比如给喜欢鱼和喜欢熊掌的程度打个分,再去寻求答案,毕竟计算机没有感情,只认0和1(量子计算机我不认识你)。

            说完了等幂性,再来说什么是概率算法。简单来说就是看脸、看人品、看运气的算法。

            有一场考试,考试的内容全部取自课本,同时老师根据自己的经验给同学们划了重点,但是因为试卷并不是该老师所出,也会有考试内容不在重点之内,老师估计试卷中至少80%内容都在重点中。学霸和学渣参加了考试,学霸为了考满分所以无视重点,学渣为了pass,因此只看了重点。这样做的结果一定是score(学霸)>=score(学渣)。

            当重点跟上图一样的时候,所有的内容都是重点的时候,学霸和学渣的学习策略变成了相同的策略,则score(学霸)=score(学渣)。但同时,学渣也要付出跟学霸相同的努力去学习这些内容,学渣心里苦啊。

            当课本如下图时

            学霸?学霸人呢,哪去了快来学习啊,不是说学习一时爽,一直学习一直爽吗,快来啊,还等什么。

            这时,如果重点内容远少于书本内容时,学渣的学习策略有了优势——花费的时间和精力较少。但是同时,学渣的分数也是一个未知数,可能得到80分也可能拿到100分,分数完全取决于重点内容与题目的契合度,契合度越高,分数越高。对学渣来说,自己具体能考多少分无法由自己决定,但是好在能够知道大概的分数范围。

            学霸的学习策略是一种遍历性算法,他会遍历、通读全部内容,以保证满分。

            学渣的学习策略则是一种概率算法,他只会遍历、学习重点内容,但至于这些重点是不是真重点他也不知道。

            与遍历算法相比,概率算法的结果具有不确定性,可能很好,也可能很差,但是会消耗更少的资源,比如时间(人生),空间(记忆)。概率算法的最大优点就是 花费较少的代价来获取最高的收益 ,在现实中体现于节省时间,使用很少的时间得到一个不与最优解相差较多的结果。

            “庄子:吾生也有涯,而知也无涯;以有涯随无涯,殆矣。”的意思是:人生是有限的,但知识是无限的(没有边界的),用有限的人生追求无限的知识,是必然失败的。

            生活中概率算法(思想)的应用其实比较广泛,只是我们很少去注意罢了。关于概率算法还衍生出了一些有趣的理论,比如墨菲定律和幸存者偏差,此处不再详述。

            上面说到,优化算法就是不停的执行同样的策略、步骤直到结束。为什么要这样呢?因为优化算法是一种概率算法,执行一次操作就得到最优结果几乎是不可能的,重复多次取得最优的概率也会增大。

            栗子又来了,要从1-10这10个数中取出一个大于9的数,只取1次,达到要求的概率为10%,取2次,达到要求的概率为19%。

            可以看出取到第10次时,达到要求的概率几乎65%,取到100次时,达到要求的概率能接近100%。优化算法就是这样简单粗暴的来求解问题的吗?非也,这并不是一个恰当的例子,因为每次取数的操作之间是相互独立的,第2次取数的结果不受第1次取数结果的影响,假设前99次都没达到要求,那么再取一次达到要求的概率跟取一次达到要求的概率相同。

            优化算法中,后一次的计算会依赖前一次的结果,以保证后一次的结果不会差于前一次的结果。这就不得不谈到马尔可夫链了。

            由铁组成的链叫做铁链,同理可得,马尔可夫链就是马尔可夫组成的链。

            言归正传, 马尔可夫链(Markov Chain, MC) ,描述的是 状态转移的过程中,当前状态转移的概率只取决于上一步的状态,与其他步的状态无关 。简单来说就是当前的结果只受上一步的结果的影响。每当我看到马尔可夫链时,我都会陷入沉思,生活中、或者历史中有太多太多与马尔可夫链相似的东西。西欧封建等级制度中“附庸的附庸不是我的附庸”与“昨天的努力决定今天的生活,今天的努力决定明天的生活”,你的下一份工作的工资大多由你当前的工资决定,这些都与马尔可夫链有异曲同工之处。

            还是从1-10这10个数中取出一个大于9的数的这个例子。基于马尔可夫链的概率算法在取数时需要使当前取的数不小于上一次取的数。比如上次取到了3,那么下次只能在3-10这几个数中取,这样一来,达到目标的概率应该会显著提升。还是用数据说话。

            取1次达到要求的概率仍然是

            取2次内达到要求的概率为

            取3次内达到要求的概率为

            取4次内……太麻烦了算了不算了

            可以看出基于马尔可夫链来取数时,3次内能达到要求的概率与不用马尔可夫链时取6次的概率相当。说明基于马尔可夫链的概率算法求解效率明显高于随机概率算法。那为什么不将所有的算法都基于马尔可夫链呢?原因一,其实现方式不是那么简单,例子中我们规定了取数的规则是复合马尔可夫链的,而在其他问题中我们需要建立适当的复合马尔科夫链的模型才能使用。原因二,并不是所有的问题都符合马尔科夫链条件,比如原子内电子出现的位置,女朋友为什么会生(lou)气,彩票号码的规律等,建立模型必须与问题有相似之处才能较好的解决问题。

            介绍完了优化算法,再来讨论讨论优化算法的使用场景。

            前面说了优化算法是一种概率算法,无法保证一定能得到最优解,故如果要求结果必须是确定、稳定的值,则无法使用优化算法求解。

            例1,求城市a与城市b间的最短路线。如果结果用来修建高速、高铁,那么其结果必定是唯一确定的值,因为修路寸土寸金,必须选取最优解使花费最少。但如果结果是用来赶路,那么即使没有选到最优的路线,我们可能也不会有太大的损失。

            例2,求城市a与城市b间的最短路线,即使有两条路径,路径1和路径2,它们从a到b的距离相同,我们也可以得出这两条路径均为满足条件的解。现在将问题改一下,求城市a到城市b耗时最少的线路。现在我们无法马上得出确切的答案,因为最短的线路可能并不是最快的路线,还需要考虑到天气,交通路况等因素,该问题的结果是一个动态的结果,不同的时间不同的天气我们很可能得出不同的结果。

            现实生产、生活中,也有不少的场景使用的优化算法。例如我们的使用的美图软件,停车场车牌识别,人脸识别等,其底层参数可能使用了优化算法来加速参数计算,其参数的细微差别对结果的影响不太大,需要较快的得出误差范围内的参数即可;电商的推荐系统等也使用了优化算法来加速参数的训练和收敛,我们会发现每次刷新时,推给我们的商品都有几个会发生变化,而且随着我们对商品的浏览,系统推给我们的商品也会发生变化,其结果是动态变化的;打车软件的订单系统,会根据司机和客人的位置,区域等来派发司机给客人,不同的区域,不同的路况,派发的司机也是动态变化的。

            综上我们可以大致总结一下推荐、不推荐使用优化算法的场景的特点。

            前面说过,优化算法处理的问题都是客观的问题,如果遇到主观的问题,比如“我孰与城北徐公美”,我们需要将这个问题进行量化而转换成客观的问题,如身高——“修八尺有余”,“外貌——形貌昳丽”,自信度——“明日徐公来,孰视之,自以为不如;窥镜而自视,又弗如远甚”,转化成客观问题后我们可以得到各个解的分数,通过比较分数,我们就能知道如何取舍如何优化。这个转化过程叫做问题的建模过程,建立的问题模型实际上是一个函数,这个函数对优化算法来说是一个黑盒函数,即不需要知道其内部实现只需要给出输入,得到输出。

            在优化算法中这个黑盒函数叫做 适应度函数 , 优化算法的求解过程就是寻找适应度函数最优解的过程 ,使用优化算法时我们最大的挑战就是如何将抽象的问题建立成具体的模型,一旦合适的模型建立完成,我们就可以愉快的使用优化算法来求解问题啦。(“合适”二字谈何容易)

            优化算法的大致介绍到此结束,后面我们会依次介绍常见、经典的优化算法,并探究其参数对算法性能的影响。

    ——2019.06.20

    [目录]

    [下一篇 优化算法笔记(二)优化算法的分类]

    二、智能优化算法是几阶算法

    是八阶算法,主要包括:

    (1)遗传算法: 模仿自然界生物进化机制

    (2)差分进化算法: 通过群体个体间的合作与竞争来优化搜索

    (3)免疫算法: 模拟生物免疫系统学习和认知功能

    (4)蚁群算法:模拟蚂蚁集体寻径行为

    (5)粒子群算法:模拟鸟群和鱼群群体行为

    (6)模拟退火算法:源于固体物质退火过程

    (7)禁忌搜索算法:模拟人类智力记忆过程

    (8)神经网络算法:模拟动物神经网络行为特征

    三、算法分析的目的是什么?

    分析算法的效率以求改进。

    算法分析是对一个算法需要多少计算时间和存储空间作定量的分析。算法(Algorithm)是解题的步骤,可以把算法定义成解一确定类问题的任意一种特殊的方法。

    四、社区检测(community detection)

    社区检测(community detection)又被称为是社区发现,它是用来揭示网络聚集行为的一种技术。社区检测实际就是一种网络聚类的方法,这里的“社区”在文献中并没有一种严格的定义,我们可以将其理解为一类具有相同特性的节点的集合。

    近年来,社区检测得到了快速的发展,这主要是由于复杂网络领域中的大牛Newman提出了一种模块度(modularity)的概念,从而使得网络社区划分的优劣可以有一个明确的评价指标来衡量。一个网络不通情况下的社区划分对应不同的模块度,模块度越大,对应的社区划分也就越合理;如果模块度越小,则对应的网络社区划分也就越模糊。

    下图描述了网络中的社区结构:

    Newman提出的模块度计算公式如下:

    所以模块度其实就是指一个网络在某种社区划分下与随机网络的差异,因为随机网络并不具有社区结构,对应的差异越大说明该社区划分越好。

    Newman提出的模块度具有两方面的意义:

    (1)模块度的提出成为了社区检测评价一种常用指标,它是度量网络社区划分优劣的量化指标;

    (2)模块度的提出极大地促进了各种优化算法应用于社区检测领域的发展。在模块度的基础之上,许多优化算法以模块度为优化的目标方程进行优化,从而使得目标函数达到最大时得到不错的社区划分结果。

    当然,模块度的概念不是绝对合理的,它也有弊端,比如分辨率限制问题等,后期国内学者在模块度的基础上提出了模块度密度的概念,可以很好的解决模块度的弊端,这里就不详细介绍了。

    常用的社区检测方法主要有如下几种:

    (1)基于图分割的方法,如Kernighan-Lin算法,谱平分法等;

    (2)基于层次聚类的方法,如GN算法、Newman快速算法等;

    (3)基于模块度优化的方法,如贪婪算法、模拟退火算法、Memetic算法、PSO算法、进化多目标优化算法等

    以上就是关于灰狼优化算法应用相关问题的回答。希望能帮到你,如有更多相关问题,您也可以联系我们的客服进行咨询,客服也会为您讲解更多精彩的知识和内容。


    推荐阅读:

    灰狼算法为什么编码简单(灰狼算法为什么编码简单一些)

    多目标灰狼算法流程图(多目标规划图解法)

    灰狼优化算法改进(灰狼优化算法改进方法)

    送爸爸的礼物排行榜(送爸爸礼物排行榜推荐)

    油车排行榜(2023油车排行榜)