HOME 首页
SERVICE 服务产品
XINMEITI 新媒体代运营
CASE 服务案例
NEWS 热点资讯
ABOUT 关于我们
CONTACT 联系我们
创意岭
让品牌有温度、有情感
专注品牌策划15年

    电商数据查询(电商大数据查询平台)

    发布时间:2023-04-14 07:28:34     稿源: 创意岭    阅读: 94        

    大家好!今天让创意岭的小编来大家介绍下关于电商数据查询的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。

    开始之前先推荐一个非常厉害的Ai人工智能工具,一键生成原创文章、方案、文案、工作计划、工作报告、论文、代码、作文、做题和对话答疑等等

    只需要输入关键词,就能返回你想要的内容,越精准,写出的就越详细,有微信小程序端、在线网页版、PC客户端

    官网:https://ai.de1919.com

    创意岭作为行业内优秀的企业,服务客户遍布全球各地,如需了解SEO相关业务请拨打电话175-8598-2043,或添加微信:1454722008

    本文目录:

    电商数据查询(电商大数据查询平台)

    一、电商API都有哪些数据?什么作用?

    电商 API 通常提供以下类型的数据:

    1. 商品和价格信息:提供商品的属性、价格、库存量以及其他相关信息,方便在线商店管理和维护商品信息。

    2. 购物车信息:提供购物车中商品的信息,包括商品数量、价格、名称、图片等。

    3. 订单信息:提供订单的相关信息,包括顾客信息、商品信息、支付方式等。

    4. 物流信息:提供订单的状态、物流信息、包裹跟踪信息等,方便顾客查询订单状态。

    5. 营销数据:提供当前活动、优惠券、打折信息等,增加顾客购买的动力和促进销售。

    电商 API 的作用包括:

    1. 提高效率:API 可以自动化地进行数据更新和管理,提高在线商店的效率和效益。

    2. 提供连接平台:不同的电商平台之间可以通过 API 进行数据连接,方便商家在不同平台展示和销售商品。

    3. 改善用户体验:API 可以提供更准确、更快速的数据查询和展示,改善顾客购物体验。

    4. 促进商业生态:API 可以方便开发者进行二次开发,提供更多应用和服务,促进商业生态的发展。

    总之,电商 API 可以方便、快捷地获取电商平台的相关数据,为商家的数据管理、顾客体验、销售和营销提供有效的支持和帮助。

    二、抖音电商数据一个周期多少天

    抖音电商罗盘数据可查询周期延长!

    在抖音电商罗盘的日常使用中,多数模块支持按7天、30天、90天、自然天、自然周和自然月查看数据,但罗盘目前仅提供最多90天/12周/3个月的数据分析功能。如果商家需要查看90天/12周/3个月之前的数据来分析自身经营状况的进步情况和对比分析,目前罗盘的数据周期无法帮助商家实现这个功能。

    三、如何用SQL分析电商用户行为数据(案例)

            

    本文以“淘宝用户行为数据集”的分析全过程为例,展示数据分析的全过程

    ——使用工具:MySQL,Excel,Navicat,PowerBI

    ——分析类型:描述分析,诊断分析

    ——分析方法:漏斗分析,用户路径分析,RFM用户价值分析,活跃/存留分析,帕累托分析,假设验证分析。

    (考虑到阅读体验文章中只放了SQL截图,如需PDF版本,再公众号后台回复“用户行为分析”领取)

    (目录如下)

           

    1.分析流程和方法

    当没有清晰的数据看板时我们需要先清洗杂乱的数据,基于分析模型做可视化,搭建描述性的数据看板。

    然后基于描述性的数据挖掘问题,提出假设做优化,或者基于用户特征数据进行预测分析找规律,基于规律设计策略。简单来说:

    ——描述性分析就是:“画地图”

    ——诊断性分析就是:“找问题”

    ——预测性分析就是 :“找规律”

    在数据分析中有两个典型的场景:

    一种是有数据,没有问题:需要先整体分析数据,然后再根据初步的描述分析,挖掘问题做诊断性分析,提出假设,设计策略解决问题。

     

    另一种是已经发现了问题,或者已经有了假设,这种做数据分析更偏向于验证假设。

     

    2.淘宝用户行为分析

    本次是对“淘宝用户行为数据集”进行分析,在分析之前我们并不知道有什么问题,所以需要先进行描述性分析,分析数据挖掘问题。

    我们首先来看下这个数据集的元数据:

           

    根据以上数据字段我们可以拿用户行为为主轴从纵深方向提出一些问题,然后再从数据中找答案

           

    纵向:

    ——这个数据集中用户的日活跃和周活跃时间有什么规律吗?

    ——在当日活跃的用户次日,三日,四日……还有多少活跃?

    深向:

    ——用户从浏览到购买的整体转化率怎么样?

    ——用户从浏览到购买的路径是怎么样子的? 

    ——平台主要会给用户推送什么商品?

    ——用户喜欢什么类目?喜欢什么商品? 

    ——怎么判断哪些是高价值用户 ? 

     

     

    下面是叮当整理的常用分析方法:      

    我们可以给前面的问题匹配一下分析方法,便于后面的分析:

    为了便于后面的数据分析,在分析之前我们需要先对做一下清洗

    看元数据(字段解释,数据来源,数据类型,数据量……)初步发现问题为之后的处理做准备。

           

    确定缺失值范围,去除不需要字段,填充缺失内容    

    根据元数据格式和后续分析需要的格式对数据进行处理

      

    去除重复值,异常值

    ——去除重复值:并把用户ID,商品ID,时间戳设置为主键

    ——异常值处理:查询并删除2017年11月25日至2017年12月3日之外的数据

         

    查询并删除小于2017-11-25的

    ——验证数据:      

    ——分析思路:

    ——SQL提数:

           

           

    ——Excel可视化:

           

    活跃曲线整体为上升状态,同为周六日,12月2号,3号相比11月25日,26日活跃度更高。

    用户在周六周日相比其他时间更活跃(周六周日为休息日,用户有更多时间)

          

    一天内用户活跃的最高峰期为21点(用户在这个时间段空闲较多)

     

    ——分析思路:

    ——SQL提数:

    列出每用户每天及当天后面又活跃的日期,并创建“活跃时间间隔表”用于后面求次日存留,三日存留……

           

    对“活跃时间间隔表视图”引用进行分组统计,计算每日存留人数并创建视图

    对存留人数表进行计算,统计活跃用户留存率

    ——Excel可视化:

           

    ——分析思路:

    ——SQL提数:

    -把各种用户行为分离出来并创建视图方便后续查询用户行为数据

    查询整体数据漏斗

    ——Excel可视化:

           

    用户从浏览到购买整体转化率2.3%,具体主要在哪个环节流失还需要再细分用户路径分析

     

    ——分析思路:

           

    ——SQL提数:

    ——PowerBI可视化:

           

    用户从浏览到购买的路径主要有4条,路径越长转化率越底

    路径1:浏览→购买:转化率1.45%

    路径2:浏览→加购物车→购买:转化率0.33

    路径3:浏览→收藏→购买:转化率0.11%

    路径4:浏览→收藏→加购物车→购买:转化率0.03%

    ——分析思路:

    ——SQL提数:

    ——Excel可视化:

           

    ——描述性分析:

    浏览量top100的商品浏览量呈阶梯分布,越靠前的阶梯之间的落差相对越大在这个阶梯中的商品越少,越靠后商品浏览量阶梯之间的落差相对越小,同阶梯内的商品越多。

    浏览量TOP100的商品所属类目中,4756105,3607361,4357323三个类目浏览量远超其他类目。

    ——分析思路:

    ——SQL提数:

    查询计算商品转化率,升序排列,取前100个

           

    ——Excel可视化:

           

    ——描述性分析:

    从商品看:有17款商品转化率超过了1。

    从类目看:这些商品所属类目分布均匀,除965809,4801426,2735466,2640118,5063620,4789432,2945933这7个类目之外,其他类目都只有一个商品在转化率TOP100的商品中。

    ——分析思路:

    用户价值分析常用的分析方式是RFM模型

           

    本次分析中的R,F,M具体定义(仅用于演示分析方法,无实际业务参考价值):

     

    ——SQL取数与分析:

    1)建立打分标准:先计算R,F的值,并排序,根据R,F值最大值和最小值得区间设计本次得打分标准

    -查询并计算R,F值创建视图

           

    -引用RF数值表,分别查询R,F的最大值和最小值

           

           

    -结合人工浏览的建立打分标准      

    2)给R,F按价值打分

    3)计算价值的平均值

           

    4)用平均值和用户分类规则表比较得出用户分类   

         

    ——Excel可视化      

     

    通过描述性分析得到可视化的数据后我们一般会先看一下是否符合业务常识

    如果符合常识接下来我们会通过与行业平均数据和本产品的同比环比对比看是否正常,如果不正常就要找原因,设计解决方案,如果正常那就看是否有可以优化的地方。

           

    我们首先来看一下这些描述性分析是否符合业务常识和指标是否正常:

           

    1.活跃曲线整体为上升状态,同为周六日,12月2号,3号相比11月25日,26日活跃度更高。

    2.用户在周六周日相比其他时间更活跃

    3.一天内用户活跃的最高峰期为21点

    4.从2017年11月15日致2017年12月3日,活跃用户新增38%

    5.从2017年11月15日致2017年12月3日,活跃用户次日留存增长18.67%,当日的活跃用户留存也在快速增长,第七日留存比次日留存高18.56%。

    6.用户从浏览到购买整体转化率2.3%

    7.用户从浏览到购买的路径主要有4条,路径越长转化率越低。

    8.浏览量top100的商品浏览量呈阶梯分布,越靠前的阶梯之间的落差相对越大在这个阶梯中的商品越少,越靠后商品浏览量阶梯之间的落差相对越小,同阶梯内的商品越多。

    9.浏览量TOP100的商品所属类目中,4756105,3607361,4357323三个类目浏览量远超其他类目。

    10.从商品看:有17款商品转化率超过了1。

    11.从类目看:这些商品所属类目分布均匀,除965809,4801426,2735466,2640118,5063620,4789432,2945933这7个类目之外,其他类目都只有一个商品在转化率TOP100的商品中。

    根据以上诊断分析我们梳理出了以下假设,做假设验证。

           

     

    假设1:这些商品中有高转化率的爆款商品

           

     

    对比浏览量TOP5的商品,发现这些商品转化率在同一类目下并不高,假设不成立

     

    假设2:4756105,3607361,4357323三个类目属于高频刚需类目

    -创建类目购买频次表

           

    -计算类目购买频次平均值

           

    -查询4756105,3607361,4357323三个类目的购买频次       

    4756105,3607361,4357323三个类目的用户购买频次明显高于平均值,假设成立

     

    假设3:有部分用户是未点击商详直接从收藏和购物车购买的。

           

    用户不是直接从收藏和购物车购买的,只是后续复购未点击商详,假设不成立

     

    假设4:淘宝推荐的商品主要是“同一类目下的高转化商品”

           

    用Excel对浏览量TOP100的商品ID和转化率TOP100的商品ID进行去重,结果无重复值,假设不成立

    3.结论:

    1)用户活跃:用户活跃曲线整体呈上升趋势,在一周中周六,周日活跃度比平时更高,在一天中用户活跃曲线从凌晨4点开始往上升,在中午12点和下午5~6点有两个小低谷(吃饭),到晚上9点时活跃度达到顶峰。

     

    2)用户留存:从2017年11月15日致2017年12月3日的用户留存数据来看,淘宝的用户留存数据较好,活跃用户次日留存增长18.67%,当日的活跃用户留存也在快速增长,第七日留存比次日留存高18.56%。

     

    3)用户转化:整体转化2.3%,用户从浏览到购买的路径主要有4条,路径越长转化率越低。

    4)平台推荐与用户偏好:从数据集中的数据来看,排除用户兴趣偏好标签,淘宝给用户用户推送的商品主要是高频刚需的类目,促使用户复购,流量回流平台。

     

    以上结论受数据量和数据类型的影响,并不一定准确,仅用来练习数据分析方法。

    (考虑到阅读体验文章中只放了SQL截图,如需PDF版本,再公众号后台回复“用户行为分析”领取)

    四、电商数据分析需要哪些工具呢?

    进行电商数据分析,找一个靠谱的数据分析平台就可以,情报通是市面上电商数据分析比较好的工具。

    情报通可以提供淘系数据,包含天猫和淘宝的全类目行业销售数据、品牌销售数据、热销宝贝数据、价格分布数据、站内推广数据、热搜词数据等,基本满足日常调研的几个维度。使用情报通,需要按照套餐付费,基本上老客户都是常年合作的,可以详细的查询到行业数据销售数据等。目前情报通能看到国内电商平台淘系、京东的行业数据,境外Lazada等平台的行业数据,以及抖音直播平台的电商数据等。

    要想了解更多关于电商数据分析的问题,建议关注情报通。情报通中的店铺分析模块可以查看竞争对手、自己和分销渠道等任意店铺最近、本月和上月所有宝贝销量、均价和销售额,每天密切跟踪竞争对手、自己店铺和分销渠道等任意店铺改名、调价每个记录,通过制作各版块分析图支持同比数据,通过分析找到全新表现出色的分销渠道。

    以上就是关于电商数据查询相关问题的回答。希望能帮到你,如有更多相关问题,您也可以联系我们的客服进行咨询,客服也会为您讲解更多精彩的知识和内容。


    推荐阅读:

    杭州知名电商公司(杭州知名电商公司排名)

    跨境电商运营公司(跨境电商运营公司都很坑吗)

    做电商需要下载什么软件(电商需要的软件)

    白酒新品上市的宣传语(白酒新品上市的宣传语是什么)

    钱财排行榜(钱排行榜前十名)