常用命令:set/get/decr/incr/mget等;
应用场景:String是最常用的一种数据类型,普通的key/value存储都可以归为此类;
实现方式:String在redis内部存储默认就是一个字符串,被redisObject所引用,当遇到incr、decr等操作时会转成数值型进行计算,此时redisObject的encoding字段为int。
常用命令:hget/hset/hgetall等
应用场景:我们要存储一个用户信息对象数据,其中包括用户ID、用户姓名、年龄和生日,通过用户ID我们希望获取该用户的姓名或者年龄或者生日;
实现方式:Redis的Hash实际是内部存储的Value为一个HashMap,并提供了直接存取这个Map成员的接口。如图所示,Key是用户ID, value是一个Map。这个Map的key是成员的属性名,value是属性值。这样对数据的修改和存取都可以直接通过其内部Map的Key(Redis里称内部Map的key为field), 也就是通过 key(用户ID) + field(属性标签) 就可以操作对应属性数据。当前HashMap的实现有两种方式:当HashMap的成员比较少时Redis为了节省内存会采用类似一维数组的方式来紧凑存储,而不会采用真正的HashMap结构,这时对应的value的redisObject的encoding为zipmap,当成员数量增大时会自动转成真正的HashMap,此时encoding为ht。
常用命令:lpush/rpush/lpop/rpop/lrange等;
应用场景:Redis list的应用场景非常多,也是Redis最重要的数据结构之一,比如twitter的关注列表,粉丝列表等都可以用Redis的list结构来实现;
实现方式:Redis list的实现为一个双向链表,即可以支持反向查找和遍历,更方便操作,不过带来了部分额外的内存开销,Redis内部的很多实现,包括发送缓冲队列等也都是用的这个数据结构。
常用命令:sadd/spop/smembers/sunion等;
应用场景:Redis set对外提供的功能与list类似是一个列表的功能,特殊之处在于set是可以自动排重的,当你需要存储一个列表数据,又不希望出现重复数据时,set是一个很好的选择,并且set提供了判断某个成员是否在一个set集合内的重要接口,这个也是list所不能提供的;
实现方式:set 的内部实现是一个 value永远为null的HashMap,实际就是通过计算hash的方式来快速排重的,这也是set能提供判断一个成员是否在集合内的原因。
常用命令:zadd/zrange/zrem/zcard等;
应用场景:Redis sorted set的使用场景与set类似,区别是set不是自动有序的,而sorted set可以通过用户额外提供一个优先级(score)的参数来为成员排序,并且是插入有序的,即自动排序。当你需要一个有序的并且不重复的集合列表,那么可以选择sorted set数据结构,比如twitter 的public timeline可以以发表时间作为score来存储,这样获取时就是自动按时间排好序的。
实现方式:Redis sorted set的内部使用HashMap和跳跃表(SkipList)来保证数据的存储和有序,HashMap里放的是成员到score的映射,而跳跃表里存放的是所有的成员,排序依据是HashMap里存的score,使用跳跃表的结构可以获得比较高的查找效率,并且在实现上比较简单。
appendfsync no 当设置appendfsync为no的时候,Redis不会主动调用fsync去将AOF日志内容同步到磁盘,所以这一切就完全依赖于操作系统的调试了。对大多数Linux操作系统,是每30秒进行一次fsync,将缓冲区中的数据写到磁盘上。
appendfsync everysec 当设置appendfsync为everysec的时候,Redis会默认每隔一秒进行一次fsync调用,将缓冲区中的数据写到磁盘。但是当这一次的fsync调用时长超过1秒时。Redis会采取延迟fsync的策略,再等一秒钟。也就是在两秒后再进行fsync,这一次的fsync就不管会执行多长时间都会进行。这时候由于在fsync时文件描述符会被阻塞,所以当前的写操作就会阻塞。所以结论就是,在绝大多数情况下,Redis会每隔一秒进行一次fsync。在最坏的情况下,两秒钟会进行一次fsync操作。这一操作在大多数数据库系统中被称为group commit,就是组合多次写操作的数据,一次性将日志写到磁盘。
appednfsync always 当设置appendfsync为always时,每一次写操作都会调用一次fsync,这时数据是最安全的,当然,由于每次都会执行fsync,所以其性能也会受到影响。
redis能做什么(redis可以做什么)
大家好!今天让创意岭的小编来大家介绍下关于redis能做什么的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。
开始之前先推荐一个非常厉害的Ai人工智能工具,一键生成原创文章、方案、文案、工作计划、工作报告、论文、代码、作文、做题和对话答疑等等
只需要输入关键词,就能返回你想要的内容,越精准,写出的就越详细,有微信小程序端、在线网页版、PC客户端
创意岭作为行业内优秀的企业,服务客户遍布全球各地,如需了解SEO相关业务请拨打电话175-8598-2043,或添加微信:1454722008
本文目录:
一、Redis实现简单消息队列
打开浏览器,输入地址,按下回车,打开了页面。于是一个 HTTP 请求( request )就由客户端发送到服务器,服务器处理请求,返回响应( response )内容。
我们每天都在浏览网页,发送大大小小的请求给服务器。有时候,服务器接到了请求,会发现他也需要给另外的服务器发送请求,或者服务器也需要做另外一些事情,于是最初们发送的请求就被阻塞了,也就是要等待服务器完成其他的事情。
更多的时候,服务器做的额外事情,并不需要客户端等待,这时候就可以把这些额外的事情异步去做。从事异步任务的工具有很多。主要原理还是处理通知消息,针对通知消息通常采取是队列结构。生产和消费消息进行通信和业务实现。
上述异步任务的实现,可以抽象为生产者消费模型。如同一个餐馆,厨师在做饭,吃货在吃饭。如果厨师做了很多,暂时卖不完,厨师就会休息;如果客户很多,厨师马不停蹄的忙碌,客户则需要慢慢等待。实现生产者和消费者的方式用很多,下面使用 Python 标准库 Queue 写个小例子:
大概输出如下:
Python内置了一个好用的队列结构。我们也可以是用redis实现类似的操作。并做一个简单的异步任务。
Redis提供了两种方式来作消息队列。一个是使用 生产者消费模式 模式,另外一个方法就是 发布订阅者模式 。前者会让一个或者多个客户端监听消息队列,一旦消息到达,消费者马上消费,谁先抢到算谁的,如果队列里没有消息,则消费者继续监听。后者也是一个或多个客户端订阅消息频道,只要发布者发布消息,所有订阅者都能收到消息,订阅者都是平等的。
主要使用了redis提供的blpop获取队列数据,如果队列没有数据则阻塞等待,也就是监听。
使用redis的pubsub功能,订阅者订阅频道,发布者发布消息到频道了,频道就是一个消息队列。
我们分别实现了两种异步任务的后端服务,直接启动他们,就能监听redis队列或频道的消息了。简单的测试如下:
启动脚本,使用
可以分别在监听的脚本输入中看到异步消息。在异步的任务中,可以执行一些耗时间的操作,当然目前这些做法并不知道异步的执行结果,如果需要知道异步的执行结果,可以考虑设计协程任务或者使用一些工具如 RQ 或者 celery 等。
二、利用Redis设计库存系统的苦与乐
在秒杀等高并发场景下,既要保证库存安全,也要拥有极高的系统性能。从存储结构上,很多同学会选用Redis,毕竟Redis的单线程操作特性,很好地避免了线程安全的问题,同时具备极高的读写性能。
我们先来看下库存系统设计的几大核心要点:
1. 库存安全:既要保证线程安全,也要防止出现超卖
2. 同步响应:业务场景基本不允许异步响应库存扣减结果
3. 性能极限:在seckill场景下,性能总是被要求越高越好
我们来看下如何利用Redis来解决上面的三个问题。
一.库存安全
利用Redis来做库存扣减,避免超限的"方法"很多,坑也很多,我们先来看下常用的陷阱有哪些。
1. 先获取当前库存值进行比较,再进行扣减
defdecr_stock():conn=redis_conn()key="productA"current_storage=conn.get(key)current_storage_int=int(current_storage)ifcurrent_storage_int<=0 :return0result=conn.decr(key)returnresult
我们先在Redis中拿到当前的库存值,然后check是否已经扣减到了零,如果已经扣减到了零,则直接return;否则,就利用Redis的decr原子操作进行扣减,同时返回扣减后的库存值。
这种方法的问题很明显,在并发条件下,会出现脏读,设想一个场景,AB两个请求进来,A获取的库存值为1,B获取的库存值为1,然后两个请求都被发到redis中进行扣减操作,然后这种场景下,A最后得到的库存值为0;但是B最后得到的库存值为-1,超限。
2. 先扣减库存,再做比较,跟进情况是否做回滚
defdecr_stock():conn=redis_conn()key="productA"current=conn.decr(key)ifcurrent>=0:returncurrentelse: #回滚库存conn.incr(key)return0
直接先对库存值进行扣减,得到当前的库存值;然后,对此库存值进行check,如果库存>=0,则返回库存值,如果库存<0,则回滚库存,以便于防止负库存量的存在。
Redis Decr命令:DECR 命令会返回键 key 在执行减1操作之后的值。
这种做法引入了两个新的问题:
1).如果大批量的并发请求过来,redis承受的写操作的量,是加倍的,因为回滚库存的存在导致的。所以这种情况下,高并发量进来,极有可能将redis的写操作打出极限值,然后会出现很多redis写失败的错误警告
2). Redis的Decr操作和回滚操作无法保证原子性,在宕机情况下,容易产生数据不一致
3.先扣库存,然后通过整数溢出控制,根据情况进行回滚
defdecr_stock():conn=redis_conn()key="productA"current=conn.decr(key) #通过整数控制溢出的做法ifcheck_overflow(current):returncurrentelse: #回滚库存conn.incr(key)return0 defcheck_overflow(stock): #如果当前库存未被递减到0,则check_number为int类型,isinstance方法检测结果为true #如果当前库存已被递减到负数,则check_number为long类型,isinstance方法检测结果为falsecheck_number=sys.maxint - stockcheck_result=isinstance(check_number,int)returncheck_result
这种做法和方法2类似,只是比对部分由直接和0比对,变成了通过检测integer是否溢出的方式来进行。这样就彻底解决了高并发情况下,直接和零比对,限制不住的问题了。
虽然此种做法,相对于做法二说来,要靠谱很多,但是仍然解决不了在高并发情况下,redis写并发量加倍的问题,极有可能某个促销活动,在开始的那一刻,直接将redis的写操作打出问题来。
4.基于分布式锁的库存扣减
defdecr_stock():key ="productA" lock = getLock(key)iflocked ==1: current_storage = conn.get(key) current_storage_int = int(current_storage)ifcurrent_storage_int<=0:return0 result = conn.decr(key)returnresultelse:return"someone in it"
Redis在2.8以后支持Lua脚本的原子性操作,可以用来做分布式锁,解决超限的问题。
5. All in Lua
defstorage_scenario_six(): conn = redis_conn()lua =""" local storage = redis.call('get','storage_seckill') if storage ~= false then if tonumber(storage) > 0 then return redis.call('decr','storage_seckill') else return 'storage is zero now, can't perform decr action' end else return redis.call('set','storage_seckill',10) end """result = conn.eval(lua,0) print(result)
二、同步响应
如果只用Redis来进行存储,处理完数据直接返回前端即可。如果还要持久化到DB,要尽量避免直接操作DB,因为DB往往是最大的IO瓶颈,如果要异步落库到DB,比如使用MQ。要注意处理Redis扣减和消息发送的原子性处理。
三、性能
官网上redis的读写性能能到10W/QPS左右,这个量级应该可以解决绝大部分的场景。
但是经常有同学在压测的时候达不到这个性能,主要还是卡在网络环境上,在5W/QPS的时候,带宽就超过10M/s了。所有想追求Redis的极致性能,最好还是在同机房进行调用。
三、基于redis做缓存分页
在实际业务中我们会将一些热数据缓存到redis里面,这时候数据量比较大的话,我们就要对这些热数据进行分页,分页的方式有2种:
第一:从redis拿出所有数据后,再做内存分页(不推荐),热点数据小的时候可以这样做,性能相差不是很大,但是当数据量大的时候,分页期间就会占用大量内存,或撑爆;
第二:基于redis的数据结构做缓存分页,这里又分2种
①:基于redis的list数据结构,直接通过list的数据结构,用range方法可以进行分页,在数据量大的时候,性能也很可观,但是当存在接口高并发访问时,这个list可能会无限延长,且里面的数据会存在很多重复,这就会影响到正常的业务(不是很推荐);
②:基于redis的ZSet数据结构,通过Zset这个有序集合我们也可以做分页,同样也是用range方法,但是这里比较麻烦的是在初始化数据的时候Zset必须存放TypedTuple类型的数据,这个类型是一个value和score的键值对,具体可以查百度,这个score的生成比较麻烦我这边测试时用的是当前数据在这个list的位置,然后Zset是根据这个score值来排序的,默认是从小到大;用这个的好处是,即使在高并发情况下Zset中也不会存在重复数据从而影响正常的业务;而且分页效率也和list结构差不多;
③:用hash和Zset来一起实现;这个是问了一个朋友和得知的,Zset中存储有序的id字段,通过分页后拿到id,然后再用id去hash中取,感觉应该效率相差不大的,只是中间多了层从hash结构取,还需要维护又一个hash;(为何这样做我也不清楚);
贴一张我测试list和ZSet的结果图
四、Redis 和 Memcached 各有什么优缺点,主要的应用场景是什么样的
Redis的作者Salvatore Sanfilippo曾经对这两种基于内存的数据存储系统进行过比较:
1、Redis支持服务器端的数据操作:Redis相比Memcached来说,拥有更多的数据结构和并支持更丰富的数据操作,通常在Memcached里,你需要将数据拿到客户端来进行类似的修改再set回去。这大大增加了网络IO的次数和数据体积。在Redis中,这些复杂的操作通常和一般的GET/SET一样高效。所以,如果需要缓存能够支持更复杂的结构和操作,那么Redis会是不错的选择。
2、内存使用效率对比:使用简单的key-value存储的话,Memcached的内存利用率更高,而如果Redis采用hash结构来做key-value存储,由于其组合式的压缩,其内存利用率会高于Memcached。
3、性能对比:由于Redis只使用单核,而Memcached可以使用多核,所以平均每一个核上Redis在存储小数据时比Memcached性能更高。而在100k以上的数据中,Memcached性能要高于Redis,虽然Redis最近也在存储大数据的性能上进行优化,但是比起Memcached,还是稍有逊色。
具体为什么会出现上面的结论,以下为收集到的资料:
1、数据类型支持不同
与Memcached仅支持简单的key-value结构的数据记录不同,Redis支持的数据类型要丰富得多。最为常用的数据类型主要由五种:String、Hash、List、Set和Sorted Set。Redis内部使用一个redisObject对象来表示所有的key和value。redisObject最主要的信息如图所示:
type代表一个value对象具体是何种数据类型,encoding是不同数据类型在redis内部的存储方式,比如:type=string代表value存储的是一个普通字符串,那么对应的encoding可以是raw或者是int,如果是int则代表实际redis内部是按数值型类存储和表示这个字符串的,当然前提是这个字符串本身可以用数值表示,比如:”123″ “456”这样的字符串。只有打开了Redis的虚拟内存功能,vm字段字段才会真正的分配内存,该功能默认是关闭状态的。
1)String
2)Hash
3)List
4)Set
5)Sorted Set
2、内存管理机制不同
在Redis中,并不是所有的数据都一直存储在内存中的。这是和Memcached相比一个最大的区别。当物理内存用完时,Redis可以将一些很久没用到的value交换到磁盘。Redis只会缓存所有的key的信息,如果Redis发现内存的使用量超过了某一个阀值,将触发swap的操作,Redis根据“swappability = age*log(size_in_memory)”计算出哪些key对应的value需要swap到磁盘。然后再将这些key对应的value持久化到磁盘中,同时在内存中清除。这种特性使得Redis可以保持超过其机器本身内存大小的数据。当然,机器本身的内存必须要能够保持所有的key,毕竟这些数据是不会进行swap操作的。同时由于Redis将内存中的数据swap到磁盘中的时候,提供服务的主线程和进行swap操作的子线程会共享这部分内存,所以如果更新需要swap的数据,Redis将阻塞这个操作,直到子线程完成swap操作后才可以进行修改。当从Redis中读取数据的时候,如果读取的key对应的value不在内存中,那么Redis就需要从swap文件中加载相应数据,然后再返回给请求方。 这里就存在一个I/O线程池的问题。在默认的情况下,Redis会出现阻塞,即完成所有的swap文件加载后才会相应。这种策略在客户端的数量较小,进行批量操作的时候比较合适。但是如果将Redis应用在一个大型的网站应用程序中,这显然是无法满足大并发的情况的。所以Redis运行我们设置I/O线程池的大小,对需要从swap文件中加载相应数据的读取请求进行并发操作,减少阻塞的时间。
对于像Redis和Memcached这种基于内存的数据库系统来说,内存管理的效率高低是影响系统性能的关键因素。传统C语言中的malloc/free函数是最常用的分配和释放内存的方法,但是这种方法存在着很大的缺陷:首先,对于开发人员来说不匹配的malloc和free容易造成内存泄露;其次频繁调用会造成大量内存碎片无法回收重新利用,降低内存利用率;最后作为系统调用,其系统开销远远大于一般函数调用。所以,为了提高内存的管理效率,高效的内存管理方案都不会直接使用malloc/free调用。Redis和Memcached均使用了自身设计的内存管理机制,但是实现方法存在很大的差异,下面将会对两者的内存管理机制分别进行介绍。
Memcached默认使用Slab Allocation机制管理内存,其主要思想是按照预先规定的大小,将分配的内存分割成特定长度的块以存储相应长度的key-value数据记录,以完全解决内存碎片问题。Slab Allocation机制只为存储外部数据而设计,也就是说所有的key-value数据都存储在Slab Allocation系统里,而Memcached的其它内存请求则通过普通的malloc/free来申请,因为这些请求的数量和频率决定了它们不会对整个系统的性能造成影响Slab Allocation的原理相当简单。 如图所示,它首先从操作系统申请一大块内存,并将其分割成各种尺寸的块Chunk,并把尺寸相同的块分成组Slab Class。其中,Chunk就是用来存储key-value数据的最小单位。每个Slab Class的大小,可以在Memcached启动的时候通过制定Growth Factor来控制。假定图中Growth Factor的取值为1.25,如果第一组Chunk的大小为88个字节,第二组Chunk的大小就为112个字节,依此类推。
当Memcached接收到客户端发送过来的数据时首先会根据收到数据的大小选择一个最合适的Slab Class,然后通过查询Memcached保存着的该Slab Class内空闲Chunk的列表就可以找到一个可用于存储数据的Chunk。当一条数据库过期或者丢弃时,该记录所占用的Chunk就可以回收,重新添加到空闲列表中。从以上过程我们可以看出Memcached的内存管理制效率高,而且不会造成内存碎片,但是它最大的缺点就是会导致空间浪费。因为每个Chunk都分配了特定长度的内存空间,所以变长数据无法充分利用这些空间。如图 所示,将100个字节的数据缓存到128个字节的Chunk中,剩余的28个字节就浪费掉了。
Redis的内存管理主要通过源码中zmalloc.h和zmalloc.c两个文件来实现的。Redis为了方便内存的管理,在分配一块内存之后,会将这块内存的大小存入内存块的头部。如图所示,real_ptr是redis调用malloc后返回的指针。redis将内存块的大小size存入头部,size所占据的内存大小是已知的,为size_t类型的长度,然后返回ret_ptr。当需要释放内存的时候,ret_ptr被传给内存管理程序。通过ret_ptr,程序可以很容易的算出real_ptr的值,然后将real_ptr传给free释放内存。
Redis通过定义一个数组来记录所有的内存分配情况,这个数组的长度为ZMALLOC_MAX_ALLOC_STAT。数组的每一个元素代表当前程序所分配的内存块的个数,且内存块的大小为该元素的下标。在源码中,这个数组为zmalloc_allocations。zmalloc_allocations[16]代表已经分配的长度为16bytes的内存块的个数。zmalloc.c中有一个静态变量used_memory用来记录当前分配的内存总大小。所以,总的来看,Redis采用的是包装的mallc/free,相较于Memcached的内存管理方法来说,要简单很多。
3、数据持久化支持
Redis虽然是基于内存的存储系统,但是它本身是支持内存数据的持久化的,而且提供两种主要的持久化策略:RDB快照和AOF日志。而memcached是不支持数据持久化操作的。
1)RDB快照
Redis支持将当前数据的快照存成一个数据文件的持久化机制,即RDB快照。但是一个持续写入的数据库如何生成快照呢?Redis借助了fork命令的copy on write机制。在生成快照时,将当前进程fork出一个子进程,然后在子进程中循环所有的数据,将数据写成为RDB文件。我们可以通过Redis的save指令来配置RDB快照生成的时机,比如配置10分钟就生成快照,也可以配置有1000次写入就生成快照,也可以多个规则一起实施。这些规则的定义就在Redis的配置文件中,你也可以通过Redis的CONFIG SET命令在Redis运行时设置规则,不需要重启Redis。
Redis的RDB文件不会坏掉,因为其写操作是在一个新进程中进行的,当生成一个新的RDB文件时,Redis生成的子进程会先将数据写到一个临时文件中,然后通过原子性rename系统调用将临时文件重命名为RDB文件,这样在任何时候出现故障,Redis的RDB文件都总是可用的。同时,Redis的RDB文件也是Redis主从同步内部实现中的一环。RDB有他的不足,就是一旦数据库出现问题,那么我们的RDB文件中保存的数据并不是全新的,从上次RDB文件生成到Redis停机这段时间的数据全部丢掉了。在某些业务下,这是可以忍受的。
2)AOF日志
AOF日志的全称是append only file,它是一个追加写入的日志文件。与一般数据库的binlog不同的是,AOF文件是可识别的纯文本,它的内容就是一个个的Redis标准命令。只有那些会导致数据发生修改的命令才会追加到AOF文件。每一条修改数据的命令都生成一条日志,AOF文件会越来越大,所以Redis又提供了一个功能,叫做AOF rewrite。其功能就是重新生成一份AOF文件,新的AOF文件中一条记录的操作只会有一次,而不像一份老文件那样,可能记录了对同一个值的多次操作。其生成过程和RDB类似,也是fork一个进程,直接遍历数据,写入新的AOF临时文件。在写入新文件的过程中,所有的写操作日志还是会写到原来老的AOF文件中,同时还会记录在内存缓冲区中。当重完操作完成后,会将所有缓冲区中的日志一次性写入到临时文件中。然后调用原子性的rename命令用新的AOF文件取代老的AOF文件。
AOF是一个写文件操作,其目的是将操作日志写到磁盘上,所以它也同样会遇到我们上面说的写操作的流程。在Redis中对AOF调用write写入后,通过appendfsync选项来控制调用fsync将其写到磁盘上的时间,下面appendfsync的三个设置项,安全强度逐渐变强。
对于一般性的业务需求,建议使用RDB的方式进行持久化,原因是RDB的开销并相比AOF日志要低很多,对于那些无法忍数据丢失的应用,建议使用AOF日志。
4、集群管理的不同
Memcached是全内存的数据缓冲系统,Redis虽然支持数据的持久化,但是全内存毕竟才是其高性能的本质。作为基于内存的存储系统来说,机器物理内存的大小就是系统能够容纳的最大数据量。如果需要处理的数据量超过了单台机器的物理内存大小,就需要构建分布式集群来扩展存储能力。
Memcached本身并不支持分布式,因此只能在客户端通过像一致性哈希这样的分布式算法来实现Memcached的分布式存储。下图给出了Memcached的分布式存储实现架构。当客户端向Memcached集群发送数据之前,首先会通过内置的分布式算法计算出该条数据的目标节点,然后数据会直接发送到该节点上存储。但客户端查询数据时,同样要计算出查询数据所在的节点,然后直接向该节点发送查询请求以获取数据。
相较于Memcached只能采用客户端实现分布式存储,Redis更偏向于在服务器端构建分布式存储。最新版本的Redis已经支持了分布式存储功能。Redis Cluster是一个实现了分布式且允许单点故障的Redis高级版本,它没有中心节点,具有线性可伸缩的功能。下图给出Redis Cluster的分布式存储架构,其中节点与节点之间通过二进制协议进行通信,节点与客户端之间通过ascii协议进行通信。在数据的放置策略上,Redis Cluster将整个key的数值域分成4096个哈希槽,每个节点上可以存储一个或多个哈希槽,也就是说当前Redis Cluster支持的最大节点数就是4096。Redis Cluster使用的分布式算法也很简单:crc16( key ) % HASH_SLOTS_NUMBER。
为了保证单点故障下的数据可用性,Redis Cluster引入了Master节点和Slave节点。在Redis Cluster中,每个Master节点都会有对应的两个用于冗余的Slave节点。这样在整个集群中,任意两个节点的宕机都不会导致数据的不可用。当Master节点退出后,集群会自动选择一个Slave节点成为新的Master节点。
以上就是关于redis能做什么相关问题的回答。希望能帮到你,如有更多相关问题,您也可以联系我们的客服进行咨询,客服也会为您讲解更多精彩的知识和内容。
推荐阅读: