1、什么是e指数
自然指数e表达式(自然指数e表达式怎么算)
大家好!今天让创意岭的小编来大家介绍下关于自然指数e表达式的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。
开始之前先推荐一个非常厉害的Ai人工智能工具,一键生成原创文章、方案、文案、工作计划、工作报告、论文、代码、作文、做题和对话答疑等等
只需要输入关键词,就能返回你想要的内容,越精准,写出的就越详细,有微信小程序端、在线网页版、PC客户端
创意岭作为行业内优秀的企业,服务客户遍布全球各地,如需了解SEO相关业务请拨打电话175-8598-2043,或添加微信:1454722008
本文目录:
一、什么是e指数
e约等于2.71828……,是一个无理数,它是(1+1/n)的n次方的极限(n趋向于无穷大).
e在高等数学中非常重要,指数函数y=e^x是一个比较特殊的指数,它的导函数就等于它本身,由此延伸出去,数学科学的众多理论中,e都尤其很特殊和很重要的地位.
很难一下子讲清楚啦:)有机会学习高等数学,甚至进入打学数学系学习的话,您就会了解到它的重要性.
二、请问自然对数中的“e”的数值是怎样推导出来的?
这个问题属于初等函数范畴,需要具备函数极限、微积分 方面的知识基础。浏览了楼主的回答列表,我认为楼主的知识基础已经具备。
================================
设函数 f(x) = (1 + 1/x)^x
首先证明当 x 趋向正无穷大时,该函数有极限。其次求该极限。
取x为整数n的情况,利用二项式定理
f(n) = (1+1/n)^n
=(k从0到n的求和)∑n(n-1)(n-2)……(n-k+1)/(k!*n^k)
=(k从0到n的求和)∑(1/k!)*(1-1/n)(1-2/n)……[1-(k-1)/n]
同理写出f(n+1)的展开式,容易看出 f(n+1) > f(n)
因此 f(n)是单调递增函数
同时从f(n)的展开表达式还可以得到
f(n) ≤ 1 + 1 + 1/2! + 1/3! + …… + 1/n!
再利用 n! > 2^(n-1) ,。。。(此定理的证明从略)
f(n) < 2 + 1/2 + 1/2^2 + 1/2^3 + …… + 1/2^(n-1)
= 3 - 1/2^(n-1) < 3
综上所述,f(n)随n单调递增,同时有界。因此 f(n)有极限。
之后利用初等函数中的夹挤定理,又可以进一步证明 f(x) 与f(n)类似。于是定义 x趋于正无穷大时,f(x)极限值为 e。
通过对 x取一个很大的数,可以计算出 e。x取得越大,e值越精确。
e≈2.7182818284……
e 值是这样定义出的。进一步研究又表明e值有一些有趣的数学性质。
例如对于以a为底的对数函数 f(x)=loga(x)求微分,
其结果为 f'(x)= [loga(e)]/x
这个结果的简单证明过程:
f'(x) = lim [f(x+Δx) - f(x)]/Δx 。其中 Δx 趋向0。
代入 f(x)及 f(x+Δx)表达式后,
f'(x)= (1/x) * lim loga(1+Δx/x)^(Δx/x)
f'(x) = (1/x) * lim loga(1 +1/z)^z ,其中z趋向正无穷大
所以
f'(x)=(1/x)* loga(e)
然后在利用这个结果以及反函数的微分,可以证明 指数函数的微分 为
f(x) = a^x
f'(x) = loge(a) * a^x
因此定义 loge(a) = ln a
自此出现了自然对数。
另外从 (a^x)' = lna * a^x 可以推出 e^x 的导数恰好是其自身。
三、
四、
以上就是关于自然指数e表达式相关问题的回答。希望能帮到你,如有更多相关问题,您也可以联系我们的客服进行咨询,客服也会为您讲解更多精彩的知识和内容。
推荐阅读:
杭州市临平卫生中等专业学校(杭州市临平卫生中等专业学校招聘)