HOME 首页
SERVICE 服务产品
XINMEITI 新媒体代运营
CASE 服务案例
NEWS 热点资讯
ABOUT 关于我们
CONTACT 联系我们
创意岭
让品牌有温度、有情感
专注品牌策划15年

    高光谱图像特征提取(高光谱图像特征提取MATLAB)

    发布时间:2023-04-13 21:11:06     稿源: 创意岭    阅读: 64        

    大家好!今天让创意岭的小编来大家介绍下关于高光谱图像特征提取的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。

    开始之前先推荐一个非常厉害的Ai人工智能工具,一键生成原创文章、方案、文案、工作计划、工作报告、论文、代码、作文、做题和对话答疑等等

    只需要输入关键词,就能返回你想要的内容,越精准,写出的就越详细,有微信小程序端、在线网页版、PC客户端

    官网:https://ai.de1919.com

    创意岭作为行业内优秀的企业,服务客户遍布全球各地,如需了解SEO相关业务请拨打电话175-8598-2043,或添加微信:1454722008

    本文目录:

    高光谱图像特征提取(高光谱图像特征提取MATLAB)

    一、如何深度学习抽取图片特征,并利用这些特征和已知数值建立模型进行预测?

    你这应该不是数字图像处理,应该是一种包含其它信息的特殊图片,我的方向是高光谱,如果是结合高光谱图像技术的话,要结合一定的化学计量学方法,具体是哪个化学分式影响水果糖度不同,主要应用的工程软件,MATLAB比较通用一点,也好沟通,特征提取后,建立一个数学的预测模型,把你的图片加载到MATLAB的算法内,一步步跑出来,这就是你的程序侧。

    主要还是依靠算法实现,如果你要用深度学习去实现预测水果糖度,还是要了解一下食品检测的最新算法,目前我了解的,还是CNN开拓性比较大一些。算法要看你的侧重了,侧重在降维、特征提取还是回归模型的建立,还是全部的新算法。

    二、遥感光谱数据的获取

    遥感技术从航空摄影测量逐步演变发展起来,大致经历了3个发展阶段:

    1.航空摄影测量发展阶段

    目前仍保存着的最早一帧航空相片是1860年J.W.布莱克从气球上拍摄的波士顿市的相片。在地质上的应用则始于1913年,有人在飞机上用摄影机对着非洲利比亚的本格逊油田摄影成像,并用这套肮空相片编制了本格逊油田地质图。航空摄影遥感主要以飞机或者气球为运载工具,用航空摄影机对目标获取信息,然后再经过负片和正片过程得到最终的航空相片。航空摄影利用的是电磁波可见光全色波段,用感光胶片接受所摄目标物反射来的太阳光线感光、成像,一般感光片的感光范围是0.3~0.9μm。航空摄影大多数情况下是垂直摄影,即航空摄影机主轴保持沿铅垂方向进行拍照;在特殊情况下,利用专门相机进行斜倾摄影。航空摄影按所利用的电磁波波段、相应的感光片及所成图像的特点,分成4种,即:航空可见光全色黑白图像;航空可见光真彩色图像:航空红外假彩色图像:航空红外黑白图像。其中,航空可见光全色黑白图像和航空红外假彩色图像最为常用,它们主要利用地物波谱的宽波段反射强度特性。

    2.多光谱卫星遥感阶段

    数字卫星成像首先是从气象卫星开始的,在1960年TIROS-1气象卫星提供了非常粗糙的卫星图像,主要用来展示云的样式。随后,在1970年代,美国国家海洋和大气管理局(NOAA)发射了甚高分辨率辐射传感器(AVHRR)进行气象预报,它的地面分辨率是1.1km,我们在电视气象预报节目中看到它所获得的云图。同时,从1970年代开始,相继发射了一些搭载更高分辨率传感器的卫星。如:1972年7月23日,美国国家航空和宇宙航行局(NASA)发射了第一颗专门用来进行地球表面监测和填图的地球资源技术卫星(ERTS-U),1975年被更名为陆地卫星(Landsat)。在Landsatl-3上都装有多光谱扫描仪(MSS),该扫描仪有4个波段,即绿、红和两个红外波段,地面分辨率约为80m。1982年,Landsat4搭载了专题制图仪(TM),它有7个波段,比MSS覆盖波谱范围更宽,波段宽度划分得更细些,更能反映地物反射光谱特性的变化规律,其地面分辨率除第6波段为120m外,均为30m。多光谱遥感的最典型特征是能够利用多个波段同时获取同一目标的多个波谱特征。这样就大大提高了遥感识别地物的能力。随后各国纷纷效仿,传感器的光谱范围从可见光、红外直至微波波段,应用范围也不断扩大。

    3.成像光谱遥感技术发展阶段

    成像光谱遥感技术是多光谱技术发展的一次跨越。Hunt的研究结果表明特征矿物的吸收宽度大约在20~40nm,而多光谱遥感数据(例如,MSS和TM)的光谱分辨率仅为100nm左右,因此遥感科学家们开始研究高光谱分辨率和空间分辨率的遥感传感器。1981年,一台航天飞机多光谱红外辐射计(SMIRR)随着美国航天飞机“哥伦比亚”号对地球表面进行了一次有限航带的观测,第一次实现了从空间通过高光谱分辨率遥感直鉴别碳酸盐岩以及粘土高岭土矿物,由此拉开了成像光谱遥感岩性识别的新篇章。继JPL的AIS-1和AIS-2以及AVIRIS航空成像光谱仪研制成功之后,加拿大也先后研制成功了FIL/PML,CAS1及SFSI等几种成像光谱仪(童庆禧等,1993)。其他的还有:HIRIS(high resolution imaging spectrometer)成像光谱仪,在0.4~2.5μm范围内有192 个光谱波段,地面分辨率30m,在0.4~1.0μm波长范围光谱分辨率为9.4nm,1.0~2.5μm范围内为11.7nm(Goetz& Herring 1989;Kerekes & Landgrebe,1991)。美国地球物理环境研究公司(Geophysical and Environ-mental Research Corporation)的63通道成像光谱仪(GER)是专门为地质遥感研究设计的,被多次用于岩性填图(郑兰芬等,1992;Bamaby W rockwell,1997)。除航空成像光谱仪外,美国和欧洲空间局(ESA)已制定了发展航天成像光谱仪的计划,其中美国的中分辨率成像光谱仪(MODIS)已经加入地球观测系统(EOS)发射入轨,对地球实现周期性的高光谱分辨率遥感观测。欧空局的中分辨率成像光谱仪(MERIS)也将于同时发射(童庆禧等,1993)。

    从1990~1995年,Roger N.Clark等人先后利用AVIRIS数据在美国内华达州,卡普来特试验场进行了矿物和岩性的识别和填图,他们发现成像光谱仪不仅能区分地表发射光谱中总体亮度和坡度差异(多光谱技术MSS,TM和SPOT区分地物的基础),而且能得出用于识别特殊地物的光谱吸收波段,成像光谱数据的光谱分析可以对任何在测量光谱范围内有独特吸收特征的物质(矿物、植被、人T物体、水体、雪等)进行识别和填图(Clark,R.N.et al.,1996)。

    中国科学院上海技术物理研究所是我国成像光谱仪的主要研制机构。1983年研制成功了第一台工作于短波红外光谱区(2.05~2.5μm)的6通道红外细分光谱扫描仪,其光谱分辨率在30~50nm之间。1987年,在国家和中国科学院黄金找矿任务的驱动下,该仪器发展到12个通道,其波段位置更趋于与地面粘土矿物、碳酸盐岩矿物的吸收波段相一致,因而在地质岩性识别方面具有更大的能力(童庆禧等,1993)。另外还有热红外多光谱扫描仪(TIMS),19 波段多光谱扫描仪(AMSS)以及71波段多光谱机载成像光谱仪(MATS)等。这些光谱仪的数据主要用于油气资源遥感(朱振海,1993)和矿物制图(王晋年等,1996)等方面,数据的处理技术和矿物识别的理论研究都取得了不同程度的进展(李天宏,1997)。

    综观遥感光谱数据的获取,具有几个新的发展:

    ①扩展了应用光谱范围,增加了光谱波段;②提高了光谱和空间分辨率;③具有获得立体像对的功能,打破了只有航空相片才能有立体像对的能力(如SPOT图像);④改进了探测器性能或探测器器件,即线、面阵CCD器件;⑤提高了图像数据精度;⑥应用领域纵向发展,如用TM图像数据直接可以识别赤铁矿、针铁矿等矿物。

    在20世纪末和21世纪初,空间高光谱成像卫星已成为遥感对地观测中的一项重要前沿技术,在研究地球资源、监测地球环境中发挥越来越重要的作用。

    高光谱分辨率遥感技术的发展是20世纪末的最后两个10年中人类在对地观测方面所取得的重大技术突破之一,是当前乃至21世纪初的遥感前沿技术、通过高光谱成像所获取的地球表面的图像包含了丰富的空间、辐射和光谱三重信息。进入20世纪90年代后期,伴随着高光谱遥感应用的一系列基本问题,如高光谱成像信息的定标和定量化、成像光谱图像信息可视化及多维表达、图像-光谱变换、大数据量信息处理等的解决、高光谱遥感已由实验研究阶段逐步转向实际应用阶段,而作为高光谱遥感应用这一热点中的重点就是高光谱数据信息挖掘技术的提高和与之紧密相连的应用领域的扩展。

    高光谱遥感数据最主要的特点是:将传统的图像维与光谱维信息融合为一体,在获取地表空间图像的同时,得到每个地物的连续光谱信息,从而实现依据地物光谱特征的地物成分信息反演与地物识别。它由以下3部分组成:

    (1)空间图像维

    在空间图像维,高光谱数据与一般的图像相似。一般的遥感图像模式识别算法是适用的信息挖掘技术。

    (2)光谱维

    从高光谱图像的每一个象元可以获得一个“连续”的光谱曲线,基于光谱数据库的“光谱匹配”技术可以实现识别地物的目的。同时大多数地物具有典型的光谱波形特征,尤其是光谱吸收特征与地物化学成分密切相关,对光谱吸收特征参数(吸收波长位置、吸收深度、吸收宽度)的提取将成为高光谱信息挖掘的主要方面。

    (3)特征空间维

    高光谱图像提供一个超维特征空间,对高光谱信息挖掘需要深切了解地物在高光谱数据形成的二维特征空间中分布的特点与行为,研究发现:高光谱的高维空间是相当空的,数据分布不均匀,且趋向于集中在超维立方体空间的角端,典型数据的差异性,可以映射到一系列低维的子空间,因此迫切需要发展有效的特征提取算法去发现保持重要差异性的低维子空间,从而有效地实现信息挖掘。

    三、基于小波包变换的高光谱影像目标识别算法与实现

    5.2.1.1 小波基获取算法的基本思想

    小波包变换优于小波变换的地方是其良好的时频局部化能力,所以可运用小波包变换来处理高光谱数据。基于小波包变换的高光谱影像目标识别算法的基本思想为:选取适当的小波包母函数,对像元光谱进行小波包变换,获得树形结构的小波包系数;选择信息代价函数,并利用最佳基搜索算法选取最佳基,得到最佳基在树形结构中的位置(序号);选取低频部分的几个最佳基的序号组成特征向量,作为分类参量。这里要注意几个基本问题:

    (1)基本小波函数的选取

    基本小波函数的选取直接影响小波包分解系数,进而会影响最佳基的选取及最后分类特征参量的提取。故而,基本小波的选取直接影响分类的效果。比较常用的小波基函数主要有Daubechies正交小波系、Meyer小波、Morlet小波、Mexihat小波等。一般小波变换应用中,小波基的选择主要考虑以下几方面:(1)小波基如果具有正交性,则分解后的各尺度间和尺度内的系数具有较小的相关性。(2)小波基的支撑越小,其局部化能力越强,在信号的突变检测中,紧支撑小波基是首要选择。(3)信号(图像)经小波抽样分解后重构的信号是一个小波级数,它是一个线性滤波的结果,可证明,如果小波基函数系数具有线性相位,就能实现信号(图像)的完全重建(无失真),对称或反对称的尺度函数和小波函数可以构造紧支撑的具有线性相位的小波基。(4)在信号奇异点的检测中,小波基的消失矩必须具有足够的阶数,从计算量的角度考虑,消失矩的阶数与紧支撑区间相关,过高的阶数将增加计算量。另外,如果进行信号检测,则应尽量选择与信号波形相近似的小波。

    对高光谱影像进行目标识别的小波包分析时,分析对象是单个像元或参考目标的光谱向量,所选小波基需具有正交性,即应选择正交小波基。为减少计算量,选择了消失矩为1而又唯一,同时具有对称性和紧支撑的正交小波基函数-Haar小波(即db1小波,属于Daubechies正交小波系)。对于植被,也可选择与提取的目标光谱曲线相近似的D4小波。

    Haar小波尺度函数:

    高光谱遥感影像信息提取技术

    {φ(t-k)}k∈z构成V0的标准正交基。两尺度方程为

    高光谱遥感影像信息提取技术

    小波方程为

    高光谱遥感影像信息提取技术

    Haar小波系的特点是具有紧支撑性,但不连续。在实际应用中不能很好地表示和分析连续函数。具有紧支撑和对称性的小波仅有Haar小波。

    (2)边界处理

    小波分解与重构的卷积算法在实际中有广泛应用。在对离散信号和图像处理的实际应用中,由于采集数据是有限的,为实现原始输入序列的完全重构,在作卷积运算时需要将输入序列作适当处理(即边界延拓),以保证卷积操作的正常进行。常用的边界延拓方法有:零延拓、周期延拓、周期对称延拓、光滑函数延拓、平滑延拓。

    本章以地物识别和分类为主要目标,对像元光谱向量或参考目标光谱向量进行小波包变换和分析,故而可以不采用上述常用边界处理方法。但由于小波包变换是二进小波变换,需要输入序列的长度是2的整数次幂。可以采取将像元光谱向量或参考目标光谱向量尾端补零的方法,使得像元光谱向量或参考目标光谱向量的长度为2的整数次幂。研究实例采用高光谱影像数据的波段数为224,将光谱向量尾端补零,使得输入向量的长度变为256(28)。另外也对其他周期延拓的方式进行了实验,得出补零方法的识别精度更好一些。

    (3)分类特征参量的提取

    小波包能量法是一种常用的小波特征提取方法。首先对信号进行小波包分解(一般3~4层),若对信号进行的是3层小波包分解,系数重构后得到各频带范围的信号S3j(j=0,1,…,7),对应的能量为E3j(j=0,1,…,7),显然,E3j(j=0,1,…,

    7)对应小波包分解最底层各小波包基节点,有

    高光谱遥感影像信息提取技术

    式中:xjk(j=0,1,…,7;k=0,1,…,n)表示S3j各离散点的幅值;n为重构系数的个数。由上式组成了8个子空间的特征向量,以此为特征参量。

    (4)分解层数的确定

    显然,以上述能量特征向量作为分类和目标识别的应用,都忽略了小波包变换的另一个优于小波变换的特点:对应于最佳小波包基的最优分解。对于同一小波包变换,不同类别的目标对应不同的最佳小波包基(通过从光谱库选择几种不同地物的光谱数据进行分析可发现),使得根据最佳小波包基在小波包二叉树中的位置来识别不同目标成为可能;但由于各种因素的影响,即便两个像元是同一目标,它们的最佳小波包基与参考目标的最佳小波包基在小波包二叉树中的位置也可能略有不同,而它们的最佳小波包基相互之间也不一定相同,所以对于某一目标,可以选择其最佳小波包基的前m个即前m个低频最佳基,记录它们的序号即它们在小波包二叉树中的位置,作为分类和识别的依据。因为这种方法较少考虑高频部分,而高频部分主要包括了一些细节信息和噪声信息,故而这种方法还在一定程度上解决了同一目标像元分解存在细微差异的问题,并降低了噪声信息对目标识别的影响。m的取值可以通过对目标的取样分析确定。

    基于上述提取特征参量的思想,为使选得的前m个最佳基表征具有更丰富的信息,可进行小波包完全分解(分解到第8层)。

    (5)信息代价函数的选择

    通常的应用中都是通过实验比较选择最合适的信息代价函数,用得较多的是信息熵(Shannon熵)。这里,选用信息熵(Shannon熵)、范数集中度、对数熵进行比较分析。

    5.2.1.2 算法的实现

    (1)数据结构设计

    小波包分解可以用小波包二叉树来表示。小波包二叉树中的每个节点表征小波包子空间的一个小波包基及分解系数序列。图5.1为进行3层小波包分解时,各小波包子空间对应的小波基在二叉树中对应的序号。其他层数分解的情况类推。故而将其设计为树结构能更好地表现各子空间的关系;同时,也有利于最佳基的沿树形搜索。小波包分解是递归实现的。

    图5.1 小波包3层分解树结构

    (2)最佳基搜索算法过程

    第一步:用 “*”标记最底层节点。

    第二步:将父节点的信息代价函数值与它的两个子节点的信息代价函数值之和进行比较。如果父节点的信息代价函数值小于它的两个子节点的信息代价函数值之和,则用“*” 标记父节点;否则,不用标记父节点,而用两个子节点的信息代价函数值之和代替父节点的信息代价函数值,同时将父节点原来的信息代价函数值用括号括起来。

    第三步:只考虑括号外的值,从上到下选取与树根最近的标记“*” 的节点(以这些节点为根的子树的节点将不再考虑),这些被选出的标有 “*” 的节点构成空间的不重叠的覆盖,它们正是最佳基对应的节点,这些节点对应的小波包基就是所求的最佳基(孙延奎,2005)。

    这里,搜索最佳基的算法主要由两步组成:标志构成最佳基的节点(令其flag为1);获得最佳基节点的序号。前者用递归的方法计算信息代价函数值,并标志最佳基;后者获得最佳基节点序号。

    四、应用于高光谱影像精细分类的关键点

    7.1.2.1 输入因子的设计

    本节利用谐波分析技术提取高光谱影像的能量谱特征成分,并以此作为输入参数,以探索该技术在高光谱影像精细分类中的应用。本节实验分析部分设计的因子为3次谐波分析产生的谐波余项、1~3次谐波振幅、1~3次谐波相位。

    7.1.2.2 样本C/σ2参数选取

    SVM用于分类问题,惩罚参数和核函数参数的选取对分类问题有着重要的影响。研究分类样本C/σ2的最优解意义重大。群体智能算法中的PSO算法经常被应用于解决局部最优问题,研究PSO如何根据样本选取C/σ2是本章节的一个难点。

    以上就是关于高光谱图像特征提取相关问题的回答。希望能帮到你,如有更多相关问题,您也可以联系我们的客服进行咨询,客服也会为您讲解更多精彩的知识和内容。


    推荐阅读:

    如何下载高光谱遥感影像(如何下载高光谱遥感影像文件)

    排行榜高光(高光排行榜前十名百度知道)

    直播高光片段是什么意思(直播高光片段是什么意思啊)

    三年级英语制作名片(三年级英语制作名片怎么写)

    杭州优买科技有限公司(杭州优买科技有限公司和考拉)