HOME 首页
SERVICE 服务产品
XINMEITI 新媒体代运营
CASE 服务案例
NEWS 热点资讯
ABOUT 关于我们
CONTACT 联系我们
创意岭
让品牌有温度、有情感
专注品牌策划15年

    关键词数据挖掘(关键词挖掘的工具)

    发布时间:2023-04-13 20:27:37     稿源: 创意岭    阅读: 98        

    大家好!今天让创意岭的小编来大家介绍下关于关键词数据挖掘的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。

    开始之前先推荐一个非常厉害的Ai人工智能工具,一键生成原创文章、方案、文案、工作计划、工作报告、论文、代码、作文、做题和对话答疑等等

    只需要输入关键词,就能返回你想要的内容,越精准,写出的就越详细,有微信小程序端、在线网页版、PC客户端

    官网:https://ai.de1919.com

    创意岭作为行业内优秀的企业,服务客户遍布全球各地,如需了解SEO相关业务请拨打电话175-8598-2043,或添加微信:1454722008

    本文目录:

    关键词数据挖掘(关键词挖掘的工具)

    一、python数据挖掘技术及应用论文怎么写

    python数据挖掘技术及应用论文选题如下:

    1、基于关键词的文本知识的挖掘系统的设计与实现。

    2、基于MapReduce的气候数据的分析。

    3、基于概率图模型的蛋白质功能预测。

    4、基于第三方库的人脸识别系统的设计与实现。

    5、基于hbase搜索引擎的设计与实现。

    6、基于Spark-Streaming的黑名单实时过滤系统的设计与实现。

    7、客户潜在价值评估系统的设计与实现。

    8、基于神经网络的文本分类的设计与实现。

    二、Web数据挖掘技术探析论文

    Web数据挖掘技术探析论文

    在日复一日的学习、工作生活中,大家或多或少都会接触过论文吧,论文对于所有教育工作者,对于人类整体认识的提高有着重要的意义。那么你知道一篇好的论文该怎么写吗?以下是我收集整理的Web数据挖掘技术探析论文,供大家参考借鉴,希望可以帮助到有需要的朋友。

    关键词数据挖掘(关键词挖掘的工具)

    Web数据挖掘技术探析论文 篇1

    引言

    当前,随着网络技术的发展和数据库技术的迅猛发展,有效推动了商务活动由传统活动向电子商务变革。电子商务就是利用计算机和网络技术以及远程通信技术,实现整个商务活动的电子化、数字化和网络化。基于Internet的电子商务快速发展,使现代企业积累了大量的数据,这些数据不仅能给企业带来更多有用信息,同时还使其他现代企业管理者能够及时准确的搜集到大量的数据。访问客户提供更多更优质的服务,成为电子商务成败的关键因素,因而受到现代电子商务经营者的高度关注,这也对计算机web数据技术提出了新的要求,Web数据挖掘技术应运而生。它是一种能够从网上获取大量数据,并能有效地提取有用信息供企业决策者分析参考,以便科学合理制定和调整营销策略,为客户提供动态、个性化、高效率服务的全新技术。目前,它已成为电子商务活动中不可或缺的重要载体。

    计算机web数据挖掘概述

    1.计算机web数据挖掘的由来

    计算机Web数据挖掘是一个在Web资源上将对自己有用的数据信息进行筛选的过程。Web数据挖掘是把传统的数据挖掘思想和方法移植到Web应用中,即从现有的Web文档和活动中挑选自己感兴趣且有用的模式或者隐藏的数据信息。计算机Web数据挖掘可以在多领域中展示其作用,目前已被广泛应用于数据库技术、信息获取技术、统计学、人工智能中的机器学习和神经网络等多个方面,其中对商务活动的变革起到重大的推动作用方面最为明显。

    2.计算机Web数据挖掘含义及特征

    (1)Web数据挖掘的含义

    Web数据挖掘是指数据挖掘技术在Web环境下的应用,是一项数据挖掘技术与WWW技术相结合产生的新技术,综合运用到了计算机语言、Internet、人工智能、统计学、信息学等多个领域的技术。具体说,就是通过充分利用网络(Internet),挖掘用户访问日志文件、商品信息、搜索信息、购销信息以及网络用户登记信息等内容,从中找出隐性的、潜在有用的和有价值的信息,最后再用于企业管理和商业决策。

    (2)Web数据挖掘的特点

    计算机Web数据挖掘技术具有以下特点:一是用户不用提供主观的评价信息;二是用户“访问模式动态获取”不会过时;三是可以处理大规模的数据量,并且使用方便;四是与传统数据库和数据仓库相比,Web是一个巨大、分布广泛、全球性的信息服务中心。

    (3)计算机web数据挖掘技术的类别

    web数据挖掘技术共有三类:第一类是Web使用记录挖掘。就是通过网络对Web日志记录进行挖掘,查找用户访问Web页面的模式及潜在客户等信息,以此提高其站点所有服务的竞争力。第二类是Web内容挖掘。既是指从Web文档中抽取知识的过程。第三类是Web结构挖掘。就是通过对Web上大量文档集合的内容进行小结、聚类、关联分析的方式,从Web文档的组织结构和链接关系中预测相关信息和知识。

    计算机web数据挖掘技术与电子商务的关系

    借助计算机技术和网络技术的日臻成熟,电子商务正以其快速、便捷的特点受到越来越多的企业和个人的关注。随着电子商务企业业务规模的不断扩大,电子商务企业的商品和客户数量也随之迅速增加,电子商务企业以此获得了大量的数据,这些数据正成为了电子商务企业客户管理和销售管理的重要信息。为了更好地开发和利用这些数据资源,以便给企业和客户带来更多的便利和实惠,各种数据挖掘技术也逐渐被应用到电子商务网站中。目前,基于数据挖掘(特别是web数据挖掘)技术构建的电子商务推荐系统正成为电子商务推荐系统发展的一种趋势。

    计算机web数据挖掘在电子商务中的具体应用

    (1)电子商务中的web数据挖掘的过程

    在电子商务中,web数据挖掘的过程主要有以下三个阶段:既是数据准备阶段、数据挖掘操作阶段、结果表达和解释阶段。如果在结果表达阶段中,分析结果不能让电子商务企业的决策者满意,就需要重复上述过程,直到满意为止。

    (2)Web数据挖掘技术在电子商务中的应用

    目前,电子商务在企业中得到广泛应用,极大地促进了电子商务网站的兴起,经过分析一定时期内站点上的用户的访问信息,便可发现该商务站点上潜在的客户群体、相关页面、聚类客户等数据信息,企业信息系统因此会获得大量的数据,如此多的数据使Web数据挖掘有了丰富的数据基础,使它在各种商业领域有着更加重要的.实用价值。因而,电子商务必将是未来Web数据挖掘的主攻方向。Web数据挖掘技术在电子商务中的应用主要包含以下几方面:

    一是寻找潜在客户。电子商务活动中,企业的销售商可以利用分类技术在Internet上找到潜在客户,通过挖掘Web日志记录等信息资源,对访问者进行分类,寻找访问客户共同的特征和规律,然后从已经存在的分类中找到潜在的客户。

    二是留住访问客户。电子商务企业通过商务网站可以充分挖掘客户浏览访问时留下的信息,了解客户的浏览行为,然后根据客户不同的爱好和要求,及时做出让访问客户满意的页面推荐和专属性产品,以此来不断提高网站访问的满意度,最大限度延长客户驻留的时间,实现留住老客户发掘新客户的目的。

    三是提供营销策略参考。通过Web数据挖掘,电子商务企业销售商能够通过挖掘商品访问情况和销售情况,同时结合市场的变化情况,通过聚类分析的方法,推导出客户访问的规律,不同的消费需求以及消费产品的生命周期等情况,为决策提供及时而准确的信息参考,以便决策者能够适时做出商品销售策略调整,优化商品营销。

    四是完善商务网站设计。电子商务网站站点设计者能够利用关联规则,来了解客户的行为记录和反馈情况,并以此作为改进网站的依据,不断对网站的组织结构进行优化来方便客户访问,不断提高网站的点击率。

    结语

    本文对Web数据挖掘技术进行了综述,讲述了其在电子商务中广泛应用。可以看出,随着计算机技术和数据库技术快速发展,计算机Web数据技术的应用将更加广泛,Web数据挖掘也将成为非常重要的研究领域,研究前景巨大、意义深远。目前,我国的Web数据应用还处于探索和起步阶段,还有许多问题值得深入研究。

    Web数据挖掘技术探析论文 篇2

    摘要: 该文通过介绍电子商务及数据挖掘基本知识,分别从几个方面分析了电子商务中WEB数据挖掘技术的应用。

    关键词: 电子商务;数据挖掘;应用

    1概述

    电子商务是指企业或个人以网络为载体,应用电子手段,利用现代信息技术进行商务数据交换和开展商务业务的活动。随着互联网的迅速发展,电子商务比传统商务具有更明显的优势,由于电子商务具有方便、灵活、快捷的特点,使它已逐渐成为人们生活中不可缺少的活动。目前电子商务平台网站多,行业竞争强,为了获得更多的客户资源,电子商务网站必须加强客户关系管理、改善经营理念、提升售后服务。数据挖掘是从数据集中识别出隐含的、潜在有用的、有效的,新颖的、能够被理解的信息和知识的过程。由数据集合做出归纳推理,从中挖掘并进行商业预判,能够帮助电子商务企业决策层依据预判,对市场策略调整,将企业风险降低,从而做出正确的决策,企业利润将最大化。随着电子商务的应用日益广泛,电子商务活动中会产生大量有用的数据,如何能够数据挖掘出数据的参考价值?研究客户的兴趣和爱好,对客户分门别类,将客户心仪的商品分别推荐给相关客户。因此,如何在电子商务平台上进行数据挖掘成为研究的热点问题。

    2数据挖掘技术概述

    数据挖掘(DataMining),也称数据库中的知识发现(KnowledgeDiscoveryinDatabase,KDD)。数据挖掘一般是指从海量数据中应用算法查找出隐藏的、未知的信息的过程。数据挖掘是一个在大数据资源中利用分析工具发现模型与数据之间关系的一个过程,数据挖掘对决策者寻找数据间潜在的某种关联,发现隐藏的因素起着关键作用。这些模式是有潜在价值的、并能够被理解的。数据挖掘将人工智能、机器学习、数据库、统计、可视化、信息检索、并行计算等多个领域的理论与技术融合在一起的一门多学科交叉学问,这些学科也对数据挖掘提供了很大的技术支撑。

    3Web数据挖掘特点

    Web数据挖掘就是数据挖掘在Web中的应用。Web数据挖掘的目的是从万维网的网页的内容、超链接的结构及使用日志记录中找到有价值的数据或信息。依据挖掘过程中使用的数据类别,Web数据挖掘任务可分为:Web内容挖掘、Web结构挖掘、Web使用记录挖掘。

    1)Web内容挖掘指从网页中提取文字、图片或其他组成网页内容的信息,挖掘对象通常包含文本、图形、音视频、多媒体以及其他各种类型数据。

    2)Web结构挖掘是对Web页面之间的结构进行挖掘,挖掘描述内容是如何组织的,从Web的超链接结构中寻找Web结构和页面结构中的有价值模式。例如从这些链接中,我们可以找出哪些是重要的网页,依据网页的主题,进行自动的聚类和分类,为了不同的目的从网页中根据模式获取有用的信息,从而提高检索的质量及效率。

    3)Web使用记录挖掘是根据对服务器上用户访问时的访问记录进行挖掘的方法。Web使用挖掘将日志数据映射为关系表并采用相应的数据挖掘技术来访问日志数据,对用户点击事件的搜集和分析发现用户导航行为。它用来提取关于客户如何浏览和使用访问网页的链接信息。如访问了哪些页面?在每个页面中所停留的时间?下一步点击了什么?在什么样的路线下退出浏览的?这些都是Web使用记录挖掘所关心要解决的问题。

    4电子商务中Web挖掘中技术的应用分析

    1)电子商务中序列模式分析的应用

    序列模式数据挖掘就是要挖掘基于时间或其他序列的模式。如在一套按时间顺序排列的会话或事务中一个项目有存在跟在另一个项目后面。通过这个方法,WEB销售商可以预测未来的访问模式,以帮助针对特定用户组进行广告排放设置。发现序列模式容易使客户的行为被电子商务的组织者预测,当用户浏览站点时,尽可能地迎合每个用户的浏览习惯并根据用户感兴趣的内容不断调整网页,尽可能地使每个用户满意。使用序列模式分析挖掘日志,可以发现客户的访问序列模式。在万维网使用记录挖掘应用中,序列模式挖掘可以用于捕捉用户路径之中常用的导航路径。当用户访问电子商务网站时,网站管理员能够搜索出这个访问者的对该网站的访问序列模式,将访问者感兴趣但尚未浏览的页面推荐给他。序列模式分析还能分析出商品购买的前后顺序,从而向客户提出推荐。例如在搜索引擎是发出查询请求、浏览网页信息等,会弹出与这些信息相关的广告。例如购买了打印机的用户,一般不久就会购买如打印纸、硒鼓等打印耗材。优秀的推荐系统将为客户建立一个专属商店,由每个客户的特征来调整网站的内容。也能由挖掘出的一些序列模式分析网站及产品促销的效果。

    2)电子商务中关联规则的应用

    关联规则是揭示数据之间隐含的相互关系,关联分析的任务是发现事物间的关联规则或相关程序。关联规则挖掘的目标是在数据项目中找出每一个数据信息的内在关系。关联规则挖掘就是要搜索出用户在服务器上访问的内容、页面、文件之间的联系,从而改进电子商务网站设计。可以更好在组织站点,减少用户过滤网站信息的负担,哪些商品顾客会可能在一次购物时同时购买?关联规则技术能够通过购物篮中的不同商品之间的联系,分析顾客的购物习惯。例如购买牛奶的顾客90%会同时还购买面包,这就是一条关联规则,如果商店或电子商务网站将这两种商品放在一起销售,将会提高它们的销量。关联规则挖掘目标是利用工具分析出顾客购买商品间的联系,也即典型购物篮数据分析应用。关联规则是发现同类事件中不同项目的相关性,例如手机加充电宝,鼠标加鼠标垫等购买习惯就属于关联分析。关联规则挖掘技术可以用相应算法找出关联规则,例如在上述例子中,商家可以依据商品间的关联改进商品的摆放,如果顾客购买了手机则将充电宝放入推荐的商品中,如果一些商品被同时购买的概率较大,说明这些商品存在关联性,商家可以将这些有关联的商品链接放在一起推荐给客户,有利于商品的销售,商家也根据关联有效搭配进货,提升商品管理水平。如买了灯具的顾客,多半还会购买开关插座,因此,一般会将灯具与开关插座等物品放在一个区域供顾客选购。依据分析找出顾客所需要的商品的关联规则,由挖掘分析结果向顾客推荐所需商品,也即向顾客提出可能会感兴趣的商品推荐,将会大大提高商品的销售量。

    3)电子商务中路径分析技术的应用

    路径分析技术通过对Web服务器的日志文件中客户访问站点的访问次数的分析,用来发现Web站点中最经常访问的路径来调整站点结构,从而帮助使用用户以最快的速度找到其所需要的产品或是信息。例如在用户访问某网站时,如果有很多用户不感兴趣的页面存在,就会影响用户的网页浏览速度,从而降低用户的浏览兴趣,同时也会使整个站点的维护成本提高。而利用路径分析技术能够全面地掌握网站各个页面之间的关联以及超链接之间的联系,通过分析得出访问频率最高的页面,从而改进网站结构及页面的设计。

    4)电子商务中分类分析的应用

    分类技术在根据各种预定义规则进行用户建模的Web分析应用中扮演着很重要的角色。例如,给出一组用户事务,可以计算每个用户在某个期间内购买记录总和。基于这些数据,可以建立一个分类模型,将用户分成有购买倾向和没有购买倾向两类,考虑的特征如用户统计属性以及他们的导航活动。分类技术既可以用于预测哪些购买客户对于哪类促销手段感兴趣,也可以预测和划分顾客类别。在电子商务中通过分类分析,可以得知各类客户的兴趣爱好和商品购买意向,因而发现一些潜在的购买客户,从而为每一类客户提供个性化的网络服务及开展针对性的商务活动。通过分类定位模型辅助决策人员定位他们的最佳客户和潜在客户,提高客户满意度及忠诚度,最大化客户收益率,以降低成本,增加收入。

    5)电子商务中聚类分析的应用

    聚类技术可以将具有相同特征的数据项聚成一类。聚类分析是对数据库中相关数据进行对比并找出各数据之间的关系,将不同性质特征的数据进行分类。聚类分析的目标是在相似的基础上收集数据来分类。根据具有相同或相似的顾客购买行为和顾客特征,利用聚类分析技术将市场有效地细分,细分后应可每类市场都制定有针对性的市场营销策略。聚类分别有页面聚类和用户聚类两种。用户聚类是为了建立拥有相同浏览模式的用户分组,可以在电子中商务中进行市场划分或给具有相似兴趣的用户提供个性化的Web内容,更多在用户分组上基于用户统计属性(如年龄、性别、收入等)的分析可以发现有价值的商业智能。在电子商务中将市场进行细化的区分就是运用聚类分析技术。聚类分析可根据顾客的购买行为来划分不同顾客特征的不同顾客群,通过聚类具有类似浏览行为的客户,让市场人员对顾客进行类别细分,能够给顾客提供更人性化的贴心服务。比如通过聚类技术分析,发现一些顾客喜欢访问有关汽车配件网页内容,就可以动态改变站点内容,让网络自动地给这些顾客聚类发送有关汽车配件的新产品信息或邮件。分类和聚类往往是相互作用的。在电子商务中通过聚类行为或习性相似的顾客,给顾客提供更满意的服务。技术人员在分析中先用聚类分析将要分析的数据进行聚类细分,然后用分类分析对数据集合进行分类标记,再将该标记重新进行分类,一直如此循环两种分析方法得到相对满意的结果。

    5结语

    随着互联网的飞速发展,大数据分析应用越来越广。商业贸易中电子商务所占比例越来越大,使用web挖掘技术对商业海量数据进行挖掘处理,分析客户购买喜好、跟踪市场变化,调整销售策略,对决策者做出有效决策及提高企业的市场竞争力有重要意义。

    参考文献:

    [1]庞英智.Web数据挖掘技术在电子商务中的应用[J].情报科学,2011,29(2):235-240.

    [2]马宗亚,张会彦.Web数据挖掘技术在电子商务中的应用研究[J].现代经济信息,2014(6):23-24.

    [3]徐剑彬.Web数据挖掘技术在电子商务中的应用[J].时代金融,2013(4):234-235.208

    [4]周世东.Web数据挖掘在电子商务中的应用研究[D].北京交通大学,2008.

    [5]段红英.Web数据挖掘技术在电子商务中的应用[J].陇东学院学报,2009(3):32-34.

    ;

    三、说说数据挖掘在零售业的作用

    介绍了数据挖掘技术在零售业的应用,并结合马克威分析系统介绍了常用的案例 数据挖掘在零售业中的应用摘要:本文首先系统的介绍了零售业的功能,定位及要解决的问题,然后介绍了数据挖掘的定义、算法及应用,最后结合“马克威分析系统”,利用数据挖掘技术,以案例的形式解决了零售业领域的几个典型应用。关键词:数据挖掘,关联分析,聚类,零售业 1 零售业定义:零售商业企业是指向批发商业企业或生产企业购进商品,再将商品直接出售给最终消费者的商业企业。其特征是: ① 销售对象是直接消费者,而不是那些进行转卖或生产加工的使用者。 ② 零售商业企业的交易次数颇繁,平均每次交易额较小。 ③ 零售商业企业是商品流通的最终环节。零售企业的交易活动一旦成功、便意味着商品脱离了流通领域而进入消费领域,从而实现了商品价值和使用价值。 ④ 就商品而言,除了专业的特卖店,一般零售商所包含的商品品种巨大,零售商采取的商品销售方式很多:经销,代销,联销等。随着经济、技术的不断发展,零售业面临着重大变革:日益成熟的电子商务;与关键客户和供应商之间的联盟;供应链整合、协同作业;全球化等等。为了适应环境的快速变化,因此具有竞争优势的零售商不但要知道客户是谁,买了什么,还要能够了解最适合的采购方式等。信息技术的发展推动着传统商业的发展,利用现代信息技术,实现企业管理的自动化、现代化,充分把信息技术运用与经营中,以最低的成本、最优质的服务、最快速的管理反应进行运作。 2 数据挖掘技术数据挖掘(data mining,DM)是一个萃取(extracting)和展现(presenting)新知识的流程。通过分析具体数据,发现确定有效的、新颖的、有潜在使用价值的、以往不为人知的、最终可理解的信息,为企业良好运营和决策部门做出重要决策提供帮助。数据挖掘涉及的学科领域和方法很多。根据挖掘任务分可分为分类或预测模型发现、数据总结、聚类、关联规则发现、序列模式发现、依赖关系或依赖模型发现、异常和趋势发现等等;根据挖掘方法可分为:机器学习方法、统计方法、神经网络方法和数据库方法。机器学习方法包括:归纳学习方法(决策树、规则归纳等)、基于范例学习、遗传算法等;统计方法包括:回归分析 (多元回归、自回归等)、判别分析(贝叶斯判别、费歇尔判别、非参数判别等)、聚类分析(系统聚类、动态聚类等)、探索性分析(主元分析法、相关分析法等)等;神经网络方法包括:前向神经网络(BP算法等)、自组织神经网络(自组织特征映射、竞争学习等)等;数据库方法主要包括多维数据分析(OLAP)方法。 DM在很多行业都可以有较好的应用。如:国外DM已广泛应用于银行金融、制造、保险、公共设施、政府、教育、远程通讯、软件开发等领域。据报导,DM的投资回报率有达400%甚至10倍的事例。 3 零售业中的数据挖掘通过条形码、编码系统、销售管理系统、客户资料管理及其它业务数据中,可以收集到关于商品销售、客户信息、货存单位及店铺信息等信息资料。数据从各种应用系统中采集,经分类整理,放到数据仓库里,允许高级管理人员、分析人员、采购人员、市场人员和广告客户访问,利用DM工具对这些数据进行分析,为他们提供高效的科学决策工具。如对商品进行购物篮分析,分析那些商品顾客最有希望一起购买。如被业界广为传诵的 “啤酒和尿布”案例就是通过数据挖掘技术找出人与物间规律的典型。在零售业应用领域,利用数据挖掘技术在很多方面有卓越表现:

    四、python数据挖掘——文本分析

    作者 | zhouyue65

    来源 | 君泉计量

    文本挖掘:从大量文本数据中抽取出有价值的知识,并且利用这些知识重新组织信息的过程。

    一、语料库(Corpus)

    语料库是我们要分析的所有文档的集合。

    二、中文分词

    2.1 概念:

    中文分词(Chinese Word Segmentation):将一个汉字序列切分成一个一个单独的词。

    eg:我的家乡是广东省湛江市-->我/的/家乡/是/广东省/湛江市

    停用词(Stop Words):

    数据处理时,需要过滤掉某些字或词

    √泛滥的词,如web、网站等。

    √语气助词、副词、介词、连接词等,如 的,地,得;

    2.2 安装Jieba分词包:

    最简单的方法是用CMD直接安装:输入pip install jieba,但是我的电脑上好像不行。

    后来在这里:https://pypi.org/project/jieba/#files下载了jieba0.39解压缩后 放在Python36Libsite-packages里面,然后在用cmd,pip install jieba 就下载成功了,不知道是是什么原因。

    然后我再anaconda 环境下也安装了jieba,先在Anaconda3Lib这个目录下将jieba0.39的解压缩文件放在里面,然后在Anaconda propt下输入 pip install jieba,如下图:

    2.3 代码实战:

    jieba最主要的方法是cut方法:

    jieba.cut方法接受两个输入参数:

    1) 第一个参数为需要分词的字符串

    2)cut_all参数用来控制是否采用全模式

    jieba.cut_for_search方法接受一个参数:需要分词的字符串,该方法适合用于搜索引擎构建倒排索引的分词,粒度比较细

    注意:待分词的字符串可以是gbk字符串、utf-8字符串或者unicode

    jieba.cut以及jieba.cut_for_search返回的结构都是一个可迭代的generator,可以使用for循环来获得分词后得到的每一个词语(unicode),也可以用list(jieba.cut(...))转化为list代码示例( 分词 )

    输出结果为: 我 爱

    Python

    工信处

    女干事

    每月 经过 下属 科室 都 要 亲口

    交代

    24 口 交换机 等 技术性 器件 的 安装

    工作

    分词功能用于专业的场景:

    会出现真武七截阵和天罡北斗阵被分成几个词。为了改善这个现象,我们用导入词库的方法。

    但是,如果需要导入的单词很多,jieba.add_word()这样的添加词库的方法就不高效了。

    我们可以用jieba.load_userdict(‘D:PDM2.2金庸武功招式.txt’)方法一次性导入整个词库,txt文件中为每行一个特定的词。

    2.3.1 对大量文章进行分词

    先搭建语料库:

    分词后我们需要对信息处理,就是这个分词来源于哪个文章。

    四、词频统计

    3.1词频(Term Frequency):

    某个词在该文档中出现的次数。

    3.2利用Python进行词频统计

    3.2.1 移除停用词的另一种方法,加if判断

    代码中用到的一些常用方法:

    分组统计:

    判断一个数据框中的某一列的值是否包含一个数组中的任意一个值:

    取反:(对布尔值)

    四、词云绘制

    词云(Word Cloud):是对文本中词频较高的分词,给与视觉上的突出,形成“关键词渲染”,从而国旅掉大量的文本信息,使浏览者一眼扫过就可以领略文本的主旨。

    4.1 安装词云工具包

    这个地址:https://www.lfd.uci.edu/~gohlke/pythonlibs/ ,可以搜到基本上所有的Python库,进去根据自己的系统和Python的版本进行下载即可。

    在python下安装很方便,在anaconda下安装费了点劲,最终将词云的文件放在C:UsersAdministrator 这个目录下才安装成功。

    五、美化词云(词云放入某图片形象中)

    六、关键词提取

    结果如下:

    七、关键词提取实现

    词频(Term Frequency):指的是某一个给定的词在该文档中出现的次数。

    计算公式: TF = 该次在文档中出现的次数

    逆文档频率(Inverse Document Frequency):IDF就是每个词的权重,它的大小与一个词的常见程度成反比

    计算公式:IDF = log(文档总数/(包含该词的文档数 - 1))

    TF-IDF(Term Frequency-Inverse Document Frequency):权衡某个分词是否关键词的指标,该值越大,是关键词的可能性就越大。

    计算公式:TF - IDF = TF * IDF

    7.1文档向量化

    7.2代码实战

    以上就是关于关键词数据挖掘相关问题的回答。希望能帮到你,如有更多相关问题,您也可以联系我们的客服进行咨询,客服也会为您讲解更多精彩的知识和内容。


    推荐阅读:

    淘宝关键词挖掘(淘宝关键词挖掘方法)

    商业模式设计框架(商业模式设计框架的九个关键要素)

    打造品牌的关键因素是(打造品牌的关键因素是产品设计产品质量)

    警匪电影排行榜前十名(十大必看的刑侦剧)

    杭州化工项目2023(杭州化工产业)