HOME 首页
SERVICE 服务产品
XINMEITI 新媒体代运营
CASE 服务案例
NEWS 热点资讯
ABOUT 关于我们
CONTACT 联系我们
创意岭
让品牌有温度、有情感
专注品牌策划15年

    数学必修一优化方案(数学必修一优化方案答案)

    发布时间:2023-04-13 19:25:28     稿源: 创意岭    阅读: 150        

    大家好!今天让创意岭的小编来大家介绍下关于数学必修一优化方案的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。

    开始之前先推荐一个非常厉害的Ai人工智能工具,一键生成原创文章、方案、文案、工作计划、工作报告、论文、代码、作文、做题和对话答疑等等

    只需要输入关键词,就能返回你想要的内容,越精准,写出的就越详细,有微信小程序端、在线网页版、PC客户端

    官网:https://ai.de1919.com

    创意岭作为行业内优秀的企业,服务客户遍布全球各地,如需了解相关业务请拨打电话175-8598-2043,或添加微信:1454722008

    本文目录:

    数学必修一优化方案(数学必修一优化方案答案)

    一、高一数学必修书的知识点分析

    合理安排好锻炼身体、娱乐休闲放松心情、和勤奋学习的时间,才能有个好身体、好心情、和学习好效果。整天把自己搞得疲惫不堪、身体孱弱、心情乱七八糟的的学生,是无论如何也搞不好学习的!以下是我给大家整理的 高一数学 必修书的知识点分析,希望大家能够喜欢!

    高一数学必修书的知识点分析1

    直线和平面的位置关系:

    直线和平面只有三种位置关系:在平面内、与平 面相 交、与平面平行

    ①直线在平面内——有无数个公共点

    ②直线和平面相交——有且只有一个公共点

    直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。

    esp.空间向量法(找平面的法向量)

    规定:

    a、直线与平面垂直时,所成的角为直角,

    b、直线与平面平行或在平面内,所成的角为0°角

    由此得直线和平面所成角的取值范围为[0°,90°]

    最小角定理:斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角

    三垂线定理及逆定理:如果平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直

    esp.直线和平面垂直

    直线和平面垂直的定义:如果一条直线a和一个平面内的任意一条直线都垂直,我们就说直线a和平面互相垂直.直线a叫做平面的垂线,平面叫做直线a的垂面。

    直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。

    直线与平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。

    ③直线和平面平行——没有公共点

    直线和平面平行的定义:如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。

    直线和平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。

    直线和平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

    高一数学必修书的知识点分析2

    集合常用大写拉丁字母来表示,如:A,B,C…而对于集合中的元素则用小写的拉丁字母来表示,如:a,b,c…拉丁字母只是相当于集合的名字,没有任何实际的意义。

    将拉丁字母赋给集合的 方法 是用一个等式来表示的,例如:A={…}的形式。等号左边是大写的拉丁字母,右边花括号括起来的,括号内部是具有某种共同性质的数学元素。

    常用的有列举法和描述法。

    1.列举法﹕常用于表示有限集合,把集合中的所有元素一一列举出来﹐写在大括号内﹐这种表示集合的方法叫做列举法。{1,2,3,……}

    2.描述法﹕常用于表示无限集合,把集合中元素的公共属性用文字﹐符号或式子等描述出来﹐写在大括号内﹐这种表示集合的方法叫做描述法。{x|P}(x为该集合的元素的一般形式,P为这个集合的元素的共同属性)如:小于π的正实数组成的集合表示为:{x|0

    3.图示法(venn图)﹕为了形象表示集合,我们常常画一条封闭的曲线(或者说圆圈),用它的内部表示一个集合。集合

    自然语言常用数集的符号:

    (1)全体非负整数的集合通常简称非负整数集(或自然数集),记作N;不包括0的自然数集合,记作N_

    (2)非负整数集内排除0的集,也称正整数集,记作Z+;负整数集内也排除0的集,称负整数集,记作Z-

    (3)全体整数的集合通常称作整数集,记作Z

    (4)全体有理数的集合通常简称有理数集,记作Q。Q={p/q|p∈Z,q∈N,且p,q互质}(正负有理数集合分别记作Q+Q-)

    (5)全体实数的集合通常简称实数集,记作R(正实数集合记作R+;负实数记作R-)

    (6)复数集合计作C集合的运算:集合交换律A∩B=B∩AA∪B=B∪A集合结合律(A∩B)∩C=A∩(B∩C)(A∪B)∪C=A∪(B∪C)集合分配律A∩(B∪C)=(A∩B)∪(A∩C)A∪(B∩C)=(A∪B)∩(A∪C)集合德.摩根律集合

    Cu(A∩B)=CuA∪CuBCu(A∪B)=CuA∩CuB集合“容斥原理”在研究集合时,会遇到有关集合中的元素个数问题,我们把有限集合A的元素个数记为card(A)。

    集合吸收律A∪(A∩B)=AA∩(A∪B)=A集合求补律A∪CuA=UA∩CuA=Φ设A为集合,把A的全部子集构成的集合叫做A的幂集德摩根律A-(BUC)=(A-B)∩(A-C)A-(B∩C)=(A-B)U(A-C)~(BUC)=~B∩~C~(B∩C)=~BU~C~Φ=E~E=Φ特殊集合的表示复数集C实数集R正实数集R+负实数集R-整数集Z正整数集Z+负整数集Z-有理数集Q正有理数集Q+负有理数集Q-不含0的有理数集Q_

    高一数学必修书的知识点分析3

    1.高中数学函数函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于函数A中的任意一个数x,在函数B中都有确定的数f(x)和它对应,那么就称f:A→B为从函数A到函数B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的函数{f(x)|x∈A}叫做函数的值域.

    注意:

    函数定义域:能使函数式有意义的实数x的函数称为函数的定义域。

    求函数的定义域时列不等式组的主要依据是:

    (1)分式的分母不等于零;

    (2)偶次方根的被开方数不小于零;

    (3)对数式的真数必须大于零;

    (4)指数、对数式的底必须大于零且不等于1.

    (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的函数.

    (6)指数为零底不可以等于零,

    (7)实际问题中的函数的定义域还要保证实际问题有意义.

    ?相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致(两点必须同时具备)

    2.高中数学函数值域:先考虑其定义域

    (1)观察法

    (2)配方法

    (3)代换法

    3.函数图象知识归纳

    (1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的函数C,叫做函数y=f(x),(x∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.

    (2)画法

    A、描点法:

    B、图象变换法

    常用变换方法有三种

    (1)平移变换

    (2)伸缩变换

    (3)对称变换

    4.高中数学函数区间的概念

    (1)函数区间的分类:开区间、闭区间、半开半闭区间

    (2)无穷区间

    5.映射

    一般地,设A、B是两个非空的函数,如果按某一个确定的对应法则f,使对于函数A中的任意一个元素x,在函数B中都有确定的元素y与之对应,那么就称对应f:AB为从函数A到函数B的一个映射。记作“f(对应关系):A(原象)B(象)”

    对于映射f:A→B来说,则应满足:

    (1)函数A中的每一个元素,在函数B中都有象,并且象是的;

    (2)函数A中不同的元素,在函数B中对应的象可以是同一个;

    (3)不要求函数B中的每一个元素在函数A中都有原象。

    6.高中数学函数之分段函数

    (1)在定义域的不同部分上有不同的解析表达式的函数。

    (2)各部分的自变量的取值情况.

    (3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.

    补充:复合函数

    如果y=f(u)(u∈M),u=g(x)(x∈A),则y=f[g(x)]=F(x)(x∈A)称为f、g的复合函数。

    高一数学必修书的知识点分析相关 文章 :

    ★ 高一数学必修一知识点总结

    ★ 高一数学必修一函数知识点分析

    ★ 高一数学必修1各章知识点总结

    ★ 高中数学高一数学必修一知识点

    ★ 高一数学必修一知识点汇总

    ★ 高一数学必修一知识点梳理

    ★ 高一数学知识点全面总结

    ★ 高一数学必修1知识点归纳总结

    ★ 高中数学必修一知识点总结

    ★ 高一数学必修1知识点归纳

    二、高一数学知识点汇总大全

    学习任何一门知识点都要学会对该知识点进行 总结 ,这样可以检查学生对知识的真正掌握程度以及方便学生日后的复习。下面给大家带来一些 高一数学 知识点,希望对大家有所帮助。

    目录

    高一数学知识点汇总

    高一数学知识点

    高一数学知识点大全

    高一数学知识点汇总合集

    高一数学知识点汇总

    函数的有关概念

    1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.

    注意:

    1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。

    求函数的定义域时列不等式组的主要依据是:

    (1)分式的分母不等于零;

    (2)偶次方根的被开方数不小于零;

    (3)对数式的真数必须大于零;

    (4)指数、对数式的底必须大于零且不等于1.

    (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.

    (6)指数为零底不可以等于零,

    (7)实际问题中的函数的定义域还要保证实际问题有意义.

    u 相同函数的判断 方法 :①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备)

    2.值域 : 先考虑其定义域

    (1)观察法

    (2)配方法

    (3)代换法

    3. 函数图象知识归纳

    (1)定义:在平面直角坐标系中,以函数 y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数 y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 .

    (2) 画法

    A、 描点法:

    B、 图象变换法

    常用变换方法有三种

    1) 平移变换

    2) 伸缩变换

    3) 对称变换

    4.区间的概念

    (1)区间的分类:开区间、闭区间、半开半闭区间

    (2)无穷区间

    (3)区间的数轴表示.

    5.映射

    一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯

    通过上面的高一数学必修1知识点总结,同学们已经梳理了一遍高一数学必修1的知识点,也加深了对该知识的更深了解,相信同学们一定能学好这部分知识点,也希望同学们以后的学习中多做总结。

    高一数学知识点

    集合

    (1)含n个元素的集合的子集数为2^n,真子集数为2^n-1;非空真子集的数为2^n-2;

    (2)注意:讨论的时候不要遗忘了的情况。

    (3)

    第二部分函数与导数

    1.映射:注意①第一个集合中的元素必须有象;②一对一,或多对一。

    2.函数值域的求法:①分析法;②配方法;③判别式法;④利用函数单调性;

    ⑤换元法;⑥利用均值不等式;⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);⑧利用函数有界性(、、等);⑨导数法

    3.复合函数的有关问题

    (1)复合函数定义域求法:

    ①若f(x)的定义域为〔a,b〕,则复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出②若f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域。

    (2)复合函数单调性的判定:

    ①首先将原函数分解为基本函数:内函数与外函数;

    ②分别研究内、外函数在各自定义域内的单调性;

    ③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。

    注意:外函数的定义域是内函数的值域。

    4.分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。

    5.函数的奇偶性

    ⑴函数的定义域关于原点对称是函数具有奇偶性的必要条件;

    ⑵是奇函数;

    ⑶是偶函数;

    ⑷奇函数在原点有定义,则;

    ⑸在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性;

    (6)若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性;

    高一数学知识点大全

    1.等差数列的定义

    如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示.

    2.等差数列的通项公式

    若等差数列{an}的首项是a1,公差是d,则其通项公式为an=a1+(n-1)d.

    3.等差中项

    如果A=(a+b)/2,那么A叫做a与b的等差中项.

    4.等差数列的常用性质

    (1)通项公式的推广:an=am+(n-m)d(n,m∈N_).

    (2)若{an}为等差数列,且m+n=p+q,

    则am+an=ap+aq(m,n,p,q∈N_).

    (3)若{an}是等差数列,公差为d,则ak,ak+m,ak+2m,…(k,m∈N_)是公差为md的等差数列.

    (4)数列Sm,S2m-Sm,S3m-S2m,…也是等差数列.

    (5)S2n-1=(2n-1)an.

    (6)若n为偶数,则S偶-S奇=nd/2;

    若n为奇数,则S奇-S偶=a中(中间项).

    注意:

    一个推导

    利用倒序相加法推导等差数列的前n项和公式:

    Sn=a1+a2+a3+…+an,①

    Sn=an+an-1+…+a1,②

    ①+②得:Sn=n(a1+an)/2

    两个技巧

    已知三个或四个数组成等差数列的一类问题,要善于设元.

    (1)若奇数个数成等差数列且和为定值时,可设为…,a-2d,a-d,a,a+d,a+2d,….

    (2)若偶数个数成等差数列且和为定值时,可设为…,a-3d,a-d,a+d,a+3d,…,其余各项再依据等差数列的定义进行对称设元.

    四种方法

    等差数列的判断方法

    (1)定义法:对于n≥2的任意自然数,验证an-an-1为同一常数;

    (2)等差中项法:验证2an-1=an+an-2(n≥3,n∈N_)都成立;

    (3)通项公式法:验证an=pn+q;

    (4)前n项和公式法:验证Sn=An2+Bn.

    注:后两种方法只能用来判断是否为等差数列,而不能用来证明等差数列.

    高一数学知识点汇总合集

    两个复数相等的定义:

    如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等,即:如果a,b,c,d∈R,那么a+bi=c+di

    a=c,b=d。特殊地,a,b∈R时,a+bi=0

    a=0,b=0.

    复数相等的充要条件,提供了将复数问题化归为实数问题解决的途径。

    复数相等特别提醒:

    一般地,两个复数只能说相等或不相等,而不能比较大小。如果两个复数都是实数,就可以比较大小,也只有当两个复数全是实数时才能比较大小。

    解复数相等问题的方法步骤:

    (1)把给的复数化成复数的标准形式;

    (2)根据复数相等的充要条件解之。

    高中数学知识点总结理科归纳5

    定义:

    形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。

    定义域和值域:

    当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域。

    性质:

    对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:

    首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:

    排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;

    排除了为0这种可能,即对于x

    排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。

    高一数学知识点汇总大全相关 文章 :

    ★ 高一数学知识点全面总结

    ★ 高一数学集合知识点汇总

    ★ 高一数学知识点总结归纳

    ★ 高一数学知识点总结(考前必看)

    ★ 高一数学必修一知识点汇总

    ★ 高一数学知识点总结(人教版)

    ★ 高一数学常考知识点总结

    ★ 高一数学知识点总结

    ★ 高一数学知识点总结期末必备

    var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?3b57837d30f874be5607a657c671896b"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

    三、高一数学上学期重点必用的知识点

    在数学的学习上,要及时巩固、 总结 、寻找知识间的联系,只是忙于赶做作业,乱套题型,对概念、法则、公式、定理一知半解,这些知识都是学会数学的重点,要归纳整理出来,下面是我给大家带来的 高一数学 重点知识点,希望大家能够喜欢!

    高一数学上学期重点必用的知识点1

    I.定义与定义表达式

    一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c

    (a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)

    则称y为x的二次函数。

    二次函数表达式的右边通常为二次三项式。

    II.二次函数的三种表达式

    一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)

    顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]

    交点式:y=a(x-x?)(x-x?)[仅限于与x轴有交点A(x?,0)和B(x?,0)的抛物线]

    注:在3种形式的互相转化中,有如下关系:

    h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2a

    III.二次函数的图像

    在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。

    IV.抛物线的性质

    1.抛物线是轴对称图形。对称轴为直线x=-b/2a。对称轴与抛物线的交点为抛物线的顶点P。

    特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

    2.抛物线有一个顶点P,坐标为

    P(-b/2a,(4ac-b^2)/4a)

    当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在x轴上。

    3.二次项系数a决定抛物线的开口方向和大小。

    当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

    |a|越大,则抛物线的开口越小。

    高一数学上学期重点必用的知识点2

    圆的方程定义:

    圆的标准方程(x-a)2+(y-b)2=r2中,有三个参数a、b、r,即圆心坐标为(a,b),只要求出a、b、r,这时圆的方程就被确定,因此确定圆方程,须三个独立条件,其中圆心坐标是圆的定位条件,半径是圆的定形条件。

    直线和圆的位置关系:

    1.直线和圆位置关系的判定 方法 一是方程的观点,即把圆的方程和直线的方程联立成方程组,利用判别式Δ来讨论位置关系.

    ①Δ>0,直线和圆相交.②Δ=0,直线和圆相切.③Δ<0,直线和圆相离.

    方法二是几何的观点,即把圆心到直线的距离d和半径R的大小加以比较.

    ①dR,直线和圆相离.

    2.直线和圆相切,这类问题主要是求圆的切线方程.求圆的切线方程主要可分为已知斜率k或已知直线上一点两种情况,而已知直线上一点又可分为已知圆上一点和圆外一点两种情况.

    3.直线和圆相交,这类问题主要是求弦长以及弦的中点问题.

    切线的性质

    ⑴圆心到切线的距离等于圆的半径;

    ⑵过切点的半径垂直于切线;

    ⑶经过圆心,与切线垂直的直线必经过切点;

    ⑷经过切点,与切线垂直的直线必经过圆心;

    当一条直线满足

    (1)过圆心;

    (2)过切点;

    (3)垂直于切线三个性质中的两个时,第三个性质也满足.

    切线的判定定理

    经过半径的外端点并且垂直于这条半径的直线是圆的切线.

    切线长定理

    从圆外一点作圆的两条切线,两切线长相等,圆心与这一点的连线平分两条切线的夹角.

    高一数学上学期重点必用的知识点3

    1.数列的定义

    按一定次序排列的一列数叫做数列,数列中的每一个数都叫做数列的项.

    (1)从数列定义可以看出,数列的数是按一定次序排列的,如果组成数列的数相同而排列次序不同,那么它们就不是同一数列,例如数列1,2,3,4,5与数列5,4,3,2,1是不同的数列.

    (2)在数列的定义中并没有规定数列中的数必须不同,因此,在同一数列中可以出现多个相同的数字,如:-1的1次幂,2次幂,3次幂,4次幂,…构成数列:-1,1,-1,1,….

    (4)数列的项与它的项数是不同的,数列的项是指这个数列中的某一个确定的数,是一个函数值,也就是相当于f(n),而项数是指这个数在数列中的位置序号,它是自变量的值,相当于f(n)中的n.

    (5)次序对于数列来讲是十分重要的,有几个相同的数,由于它们的排列次序不同,构成的数列就不是一个相同的数列,显然数列与数集有本质的区别.如:2,3,4,5,6这5个数按不同的次序排列时,就会得到不同的数列,而{2,3,4,5,6}中元素不论按怎样的次序排列都是同一个集合.

    高一数学上学期重点必用的知识点4

    基本平面图形

    1、直线的性质

    (1)直线公理:经过两个点有且只有一条直线。(两点确定一条直线。)

    (2)过一点的直线有无数条。

    (3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。

    2、线段的性质

    (1)线段公理:两点之间的所有连线中,线段最短。(两点之间线段最短。)

    (2)两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。

    (3)线段的大小关系和它们的长度的大小关系是一致的。

    3、线段的中点:

    点M把线段AB分成相等的两条相等的线段AM与BM,点M叫做线段AB的中点。AM=BM=1/2AB(或AB=2AM=2BM)。

    4、角:

    有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边。或:角也可以看成是一条射线绕着它的端点旋转而成的。

    5、角的表示

    角的表示方法有以下四种:

    ①用数字表示单独的角,如∠1,∠2,∠3等。

    ②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。

    ③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C等。

    ④用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等。

    注意:用三个大写字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧。

    6、角的度量

    角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”。

    把1°的角60等分,每一份叫做1分的角,1分记作“1’”。

    把1’的角60等分,每一份叫做1秒的角,1秒记作“1””。

    1°=60’,1’=60”

    7、角的平分线

    从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

    8、角的性质

    (1)角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关。

    (2)角的大小可以度量,可以比较,角可以参与运算。

    9、平角和周角:一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角叫做平角。终边继续旋转,当它又和始边重合时,所形成的角叫做周角。

    10、多边形:由若干条不在同一条直线上的线段首尾顺次相连组成的封闭平面图形叫做多边形。连接不相邻两个顶点的线段叫做多边形的对角线。

    从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以画(n-3)条对角线,把这个n边形分割成(n-2)个三角形。

    11、圆:平面上,一条线段绕着一个端点旋转一周,另一个端点形成的图形叫做圆。固定的端点O称为圆心,线段OA的长称为半径的长(通常简称为半径)。

    圆上任意两点A、B间的部分叫做圆弧,简称弧,读作“圆弧AB”或“弧AB”;由一条弧AB和经过这条弧的端点的两条半径OA、OB所组成的图形叫做扇形。顶点在圆心的角叫做圆心角。

    高一数学上学期重点必用的知识点相关 文章 :

    ★ 高一上下学期必须学会的知识点复习大纲

    ★ 高一数学知识点总结(考前必看)

    ★ 高一数学重点知识点公式总结

    ★ 高一数学知识点总结期末必备

    ★ 高一数学知识点全面总结

    ★ 高一数学必修一知识点汇总

    ★ 高一数学知识点汇总大全

    ★ 高一数学知识点小归纳

    ★ 高一上数学知识点总结

    ★ 高一数学必修一重点知识点

    var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?3b57837d30f874be5607a657c671896b"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

    四、高一数学知识点重点大全

    总结 是在一段时间内对学习和工作生活等表现加以总结和概括的一种书面材料,它是增长才干的一种好办法,让我们一起认真地写一份总结吧。总结怎么写才能发挥它的作用呢?下面是我给大家带来的 高一数学 知识点重点大全,以供大家参考!

    高一数学知识点重点大全

    (1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。

    (2)指数函数的值域为大于0的实数集合。

    (3)函数图形都是下凹的。

    (4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。

    (5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。

    (6)函数总是在某一个方向上无限趋向于X轴,永不相交。

    (7)函数总是通过(0,1)这点。

    (8)显然指数函数无界。

    奇偶性

    定义

    一般地,对于函数f(x)

    (1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。

    (2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。

    (3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。

    (4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。

    对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:

    首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:

    排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;

    排除了为0这种可能,即对于x<0和x>0的所有实数,q不能是偶数;

    排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。

    总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;

    如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。

    在x大于0时,函数的值域总是大于0的实数。

    在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。

    而只有a为正数,0才进入函数的值域。

    由于x大于0是对a的任意取值都有意义的,因此下面给出幂函数在第一象限的各自情况.

    可以看到:

    (1)所有的图形都通过(1,1)这点。

    (2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。

    (3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸。

    (4)当a小于0时,a越小,图形倾斜程度越大。

    (5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点。

    (6)显然幂函数无界。

    定义:

    x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。

    范围:

    倾斜角的取值范围是0°≤α<180°。

    理解:

    (1)注意“两个方向”:直线向上的方向、x轴的正方向;

    (2)规定当直线和x轴平行或重合时,它的倾斜角为0度。

    意义:

    ①直线的倾斜角,体现了直线对x轴正向的倾斜程度;

    ②在平面直角坐标系中,每一条直线都有一个确定的倾斜角;

    ③倾斜角相同,未必表示同一条直线。

    公式:

    k=tanα

    k>0时α∈(0°,90°)

    k<0时α∈(90°,180°)

    k=0时α=0°

    当α=90°时k不存在

    ax+by+c=0(a≠0)倾斜角为A,

    则tanA=-a/b,

    A=arctan(-a/b)

    当a≠0时,

    倾斜角为90度,即与X轴垂直

    人教版高一数学必修一知识点梳理

    1、柱、锥、台、球的结构特征

    (1)棱柱:

    定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

    分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

    表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱。

    几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

    (2)棱锥

    定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体。

    分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等

    表示:用各顶点字母,如五棱锥

    几何特征:侧面、对角面都是三角形;平行于底面的截面与底 面相 似,其相似比等于顶点到截面距离与高的比的平方。

    (3)棱台:

    定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分。

    分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等

    表示:用各顶点字母,如五棱台

    几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点

    (4)圆柱:

    定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。

    几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

    (5)圆锥:

    定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体。

    几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

    (6)圆台:

    定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分

    几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

    (7)球体:

    定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体

    几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

    2、空间几何体的三视图

    定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)

    注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;

    俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;

    侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。

    3、空间几何体的直观图——斜二测画法

    斜二测画法特点:

    ①原来与x轴平行的线段仍然与x平行且长度不变;

    ②原来与y轴平行的线段仍然与y平行,长度为原来的一半。

    高一数学知识点总结归纳

    一:集合的含义与表示

    1、集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个整体。

    把研究对象统称为元素,把一些元素组成的总体叫集合,简称为集。

    2、集合的中元素的三个特性:

    (1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。

    (2)元素的互异性:一个给定集合中的元素是的,不可重复的。

    (3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合

    3、集合的表示:{……}

    (1)用大写字母表示集合:A={我校的 篮球 队员},B={1,2,3,4,5}

    (2)集合的表示 方法 :列举法与描述法。

    a、列举法:将集合中的元素一一列举出来{a,b,c……}

    b、描述法:

    ①区间法:将集合中元素的公共属性描述出来,写在大括号内表示集合。

    {x?R|x—3>2},{x|x—3>2}

    ②语言描述法:例:{不是直角三角形的三角形}

    ③Venn图:画出一条封闭的曲线,曲线里面表示集合。

    4、集合的分类:

    (1)有限集:含有有限个元素的集合

    (2)无限集:含有无限个元素的集合

    (3)空集:不含任何元素的集合

    5、元素与集合的关系:

    (1)元素在集合里,则元素属于集合,即:a?A

    (2)元素不在集合里,则元素不属于集合,即:a¢A

    注意:常用数集及其记法:

    非负整数集(即自然数集)记作:N

    正整数集N—或N+

    整数集Z

    有理数集Q

    实数集R

    6、集合间的基本关系

    (1)。“包含”关系(1)—子集

    定义:如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集。

    高一数学知识点重点大全相关 文章 :

    ★ 高一数学知识点汇总大全

    ★ 高一数学知识点大全

    ★ 高一数学必记知识点概括

    ★ 高一数学知识点(考前必看)

    ★ 高一数学必修一知识点汇总

    ★ 高一数学重点知识点公式总结

    ★ 高一数学知识点总结归纳

    ★ 高一数学知识点总结(人教版)

    ★ 高一数学知识点小归纳

    ★ 高一数学知识点全面总结

    以上就是关于数学必修一优化方案相关问题的回答。希望能帮到你,如有更多相关问题,您也可以联系我们的客服进行咨询,客服也会为您讲解更多精彩的知识和内容。


    推荐阅读:

    我爱数学人x人(《我爱数学》)

    小学数学与校园景观设计

    优化方案数学选修2(优化方案数学选修2-2)

    抖音销售数据在哪看(抖音销售数据怎么看)

    怎么才能2个手机登1个微信号(监测对方微信聊天记录软件)