HOME 首页
SERVICE 服务产品
XINMEITI 新媒体代运营
CASE 服务案例
NEWS 热点资讯
ABOUT 关于我们
CONTACT 联系我们
创意岭
让品牌有温度、有情感
专注品牌策划15年

    区块链断链丢弃(区块链断链丢弃怎么办)

    发布时间:2023-04-10 17:37:26     稿源: 创意岭    阅读: 123        

    大家好!今天让创意岭的小编来大家介绍下关于区块链断链丢弃的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。

    开始之前先推荐一个非常厉害的Ai人工智能工具,一键生成原创文章、方案、文案、工作计划、工作报告、论文、代码、作文、做题和对话答疑等等

    只需要输入关键词,就能返回你想要的内容,越精准,写出的就越详细,有微信小程序端、在线网页版、PC客户端

    官网:https://ai.de1919.com

    创意岭作为行业内优秀的企业,服务客户遍布全球各地,如需了解相关业务请拨打电话175-8598-2043,或添加微信:1454722008

    本文目录:

    区块链断链丢弃(区块链断链丢弃怎么办)

    一、区块链的共识机制

    一、区块链共识机制的目标

    区块链是什么?简单而言,区块链是一种去中心化的数据库,或可以叫作分布式账本(distributed ledger)。传统上所有的数据库都是中心化的,例如一间银行的账本就储存在银行的中心服务器里。中心化数据库的弊端是数据的安全及正确性全系于数据库运营方(即银行),因为任何能够访问中心化数据库的人(如银行职员或黑客)都可以破坏或修改其中的数据。

    而区块链技术则容许数据库存放在全球成千上万的电脑上,每个人的账本通过点对点网络进行同步,网络中任何用户一旦增加一笔交易,交易信息将通过网络通知其他用户验证,记录到各自的账本中。区块链之所以得其名是因为它是由一个个包含交易信息的区块(block)从后向前有序链接起来的数据结构。

    很多人对区块链的疑问是,如果每一个用户都拥有一个独立的账本,那么是否意味着可以在自己的账本上添加任意的交易信息,而成千上万个账本又如何保证记账的一致性? 解决记账一致性问题正是区块链共识机制的目标 。区块链共识机制旨在保证分布式系统里所有节点中的数据完全相同并且能够对某个提案(proposal)(例如是一项交易纪录)达成一致。然而分布式系统由于引入了多个节点,所以系统中会出现各种非常复杂的情况;随着节点数量的增加,节点失效或故障、节点之间的网络通信受到干扰甚至阻断等就变成了常见的问题,解决分布式系统中的各种边界条件和意外情况也增加了解决分布式一致性问题的难度。

    区块链又可分为三种:

    公有链:全世界任何人都可以随时进入系统中读取数据、发送可确认交易、竞争记账的区块链。公有链通常被认为是“完全去中心化“的,因为没有任何人或机构可以控制或篡改其中数据的读写。公有链一般会通过代币机制鼓励参与者竞争记账,来确保数据的安全性。

    联盟链:联盟链是指有若干个机构共同参与管理的区块链。每个机构都运行着一个或多个节点,其中的数据只允许系统内不同的机构进行读写和发送交易,并且共同来记录交易数据。这类区块链被认为是“部分去中心化”。

    私有链:指其写入权限是由某个组织和机构控制的区块链。参与节点的资格会被严格的限制,由于参与的节点是有限和可控的,因此私有链往往可以有极快的交易速度、更好的隐私保护、更低的交易成本、不容易被恶意攻击、并且能够做到身份认证等金融行业必须的要求。相比中心化数据库,私有链能够防止机构内单节点故意隐瞒或篡改数据。即使发生错误,也能够迅速发现来源,因此许多大型金融机构在目前更加倾向于使用私有链技术。

    二、区块链共识机制的分类

    解决分布式一致性问题的难度催生了数种共识机制,它们各有其优缺点,亦适用于不同的环境及问题。被众人常识的共识机制有:

    l PoW(Proof of Work)工作量证明机制

    l PoS(Proof of Stake)股权/权益证明机制

    l DPoS(Delegated Proof of Stake)股份授权证明机制

    l PBFT(Practical Byzantine Fault Tolerance)实用拜占庭容错算法

    l DBFT(Delegated Byzantine Fault Tolerance)授权拜占庭容错算法

    l SCP (Stellar Consensus Protocol ) 恒星共识协议

    l RPCA(Ripple Protocol Consensus Algorithm)Ripple共识算法

    l Pool验证池共识机制

    (一)PoW(Proof of Work)工作量证明机制

    1. 基本介绍

    在该机制中,网络上的每一个节点都在使用SHA256哈希函数(hash function) 运算一个不断变化的区块头的哈希值 (hash sum)。 共识要求算出的值必须等于或小于某个给定的值。 在分布式网络中,所有的参与者都需要使用不同的随机数来持续计算该哈希值,直至达到目标为止。当一个节点的算出确切的值,其他所有的节点必须相互确认该值的正确性。之后新区块中的交易将被验证以防欺诈。

    在比特币中,以上运算哈希值的节点被称作“矿工”,而PoW的过程被称为“挖矿”。挖矿是一个耗时的过程,所以也提出了相应的激励机制(例如向矿工授予一小部分比特币)。PoW的优点是完全的去中心化,其缺点是消耗大量算力造成了的资源浪费,达成共识的周期也比较长,共识效率低下,因此其不是很适合商业使用。

    2. 加密货币的应用实例

    比特币(Bitcoin) 及莱特币(Litecoin)。以太坊(Ethereum) 的前三个阶段(Frontier前沿、Homestead家园、Metropolis大都会)皆采用PoW机制,其第四个阶段 (Serenity宁静) 将采用权益证明机制。PoW适用于公有链。

    PoW机制虽然已经成功证明了其长期稳定和相对公平,但在现有框架下,采用PoW的“挖矿”形式,将消耗大量的能源。其消耗的能源只是不停的去做SHA256的运算来保证工作量公平,并没有其他的存在意义。而目前BTC所能达到的交易效率为约5TPS(5笔/秒),以太坊目前受到单区块GAS总额的上限,所能达到的交易频率大约是25TPS,与平均千次每秒、峰值能达到万次每秒处理效率的VISA和MASTERCARD相差甚远。

    3. 简图理解模式

    (ps:其中A、B、C、D计算哈希值的过程即为“挖矿”,为了犒劳时间成本的付出,机制会以一定数量的比特币作为激励。)

    (Ps:PoS模式下,你的“挖矿”收益正比于你的币龄(币的数量*天数),而与电脑的计算性能无关。我们可以认为任何具有概率性事件的累计都是工作量证明,如淘金。假设矿石含金量为p% 质量, 当你得到一定量黄金时,我们可以认为你一定挖掘了1/p 质量的矿石。而且得到的黄金数量越多,这个证明越可靠。)

    (二)PoS(Proof of Stake)股权/权益证明机制

    1.基本介绍

    PoS要求人们证明货币数量的所有权,其相信拥有货币数量多的人攻击网络的可能性低。基于账户余额的选择是非常不公平的,因为单一最富有的人势必在网络中占主导地位,所以提出了许多解决方案。

    在股权证明机制中,每当创建一个区块时,矿工需要创建一个称为“币权”的交易,这个交易会按照一定比例预先将一些币发给矿工。然后股权证明机制根据每个节点持有代币的比例和时间(币龄), 依据算法等比例地降低节点的挖矿难度,以加快节点寻找随机数的速度,缩短达成共识所需的时间。

    与PoW相比,PoS可以节省更多的能源,更有效率。但是由于挖矿成本接近于0,因此可能会遭受攻击。且PoS在本质上仍然需要网络中的节点进行挖矿运算,所以它同样难以应用于商业领域。

    2.数字货币的应用实例

    PoS机制下较为成熟的数字货币是点点币(Peercoin)和未来币(NXT),相比于PoW,PoS机制节省了能源,引入了" 币天 "这个概念来参与随机运算。PoS机制能够让更多的持币人参与到记账这个工作中去,而不需要额外购买设备(矿机、显卡等)。每个单位代币的运算能力与其持有的时间长成正相关,即持有人持有的代币数量越多、时间越长,其所能签署、生产下一个区块的概率越大。一旦其签署了下一个区块,持币人持有的币天即清零,重新进入新的循环。

    PoS适用于公有链。

    3.区块签署人的产生方式

    在PoS机制下,因为区块的签署人由随机产生,则一些持币人会长期、大额持有代币以获得更大概率地产生区块,尽可能多的去清零他的"币天"。因此整个网络中的流通代币会减少,从而不利于代币在链上的流通,价格也更容易受到波动。由于可能会存在少量大户持有整个网络中大多数代币的情况,整个网络有可能会随着运行时间的增长而越来越趋向于中心化。相对于PoW而言,PoS机制下作恶的成本很低,因此对于分叉或是双重支付的攻击,需要更多的机制来保证共识。稳定情况下,每秒大约能产生12笔交易,但因为网络延迟及共识问题,需要约60秒才能完整广播共识区块。长期来看,生成区块(即清零"币天")的速度远低于网络传播和广播的速度,因此在PoS机制下需要对生成区块进行"限速",来保证主网的稳定运行。

    4.简图理解模式

    (PS:拥有越多“股份”权益的人越容易获取账权。是指获得多少货币,取决于你挖矿贡献的工作量,电脑性能越好,分给你的矿就会越多。)

    (在纯POS体系中,如NXT,没有挖矿过程,初始的股权分配已经固定,之后只是股权在交易者之中流转,非常类似于现实世界的股票。)

    (三)DPoS(Delegated Proof of Stake)股份授权证明机制

    1.基本介绍

    由于PoS的种种弊端,由此比特股首创的权益代表证明机制 DPoS(Delegated Proof of Stake)应运而生。DPoS 机制中的核心的要素是选举,每个系统原生代币的持有者在区块链里面都可以参与选举,所持有的代币余额即为投票权重。通过投票,股东可以选举出理事会成员,也可以就关系平台发展方向的议题表明态度,这一切构成了社区自治的基础。股东除了自己投票参与选举外,还可以通过将自己的选举票数授权给自己信任的其它账户来代表自己投票。

    具体来说, DPoS由比特股(Bitshares)项目组发明。股权拥有着选举他们的代表来进行区块的生成和验证。DPoS类似于现代企业董事会制度,比特股系统将代币持有者称为股东,由股东投票选出101名代表, 然后由这些代表负责生成和验证区块。 持币者若想称为一名代表,需先用自己的公钥去区块链注册,获得一个长度为32位的特有身份标识符,股东可以对这个标识符以交易的形式进行投票,得票数前101位被选为代表。

    代表们轮流产生区块,收益(交易手续费)平分。DPoS的优点在于大幅减少了参与区块验证和记账的节点数量,从而缩短了共识验证所需要的时间,大幅提高了交易效率。从某种角度来说,DPoS可以理解为多中心系统,兼具去中心化和中心化优势。优点:大幅缩小参与验证和记账节点的数量,可以达到秒级的共识验证。缺点:投票积极性不高,绝大部分代币持有者未参与投票;另整个共识机制还是依赖于代币,很多商业应用是不需要代币存在的。

    DPoS机制要求在产生下一个区块之前,必须验证上一个区块已经被受信任节点所签署。相比于PoS的" 全民挖矿 ",DPoS则是利用类似" 代表大会 "的制度来直接选取可信任节点,由这些可信任节点(即见证人)来代替其他持币人行使权力,见证人节点要求长期在线,从而解决了因为PoS签署区块人不是经常在线而可能导致的产块延误等一系列问题。 DPoS机制通常能达到万次每秒的交易速度,在网络延迟低的情况下可以达到十万秒级别,非常适合企业级的应用。 因为公信宝数据交易所对于数据交易频率要求高,更要求长期稳定性,因此DPoS是非常不错的选择。

    2. 股份授权证明机制下的机构与系统

    理事会是区块链网络的权力机构,理事会的人选由系统股东(即持币人)选举产生,理事会成员有权发起议案和对议案进行投票表决。

    理事会的重要职责之一是根据需要调整系统的可变参数,这些参数包括:

    l 费用相关:各种交易类型的费率。

    l 授权相关:对接入网络的第三方平台收费及补贴相关参数。

    l 区块生产相关:区块生产间隔时间,区块奖励。

    l 身份审核相关:审核验证异常机构账户的信息情况。

    l 同时,关系到理事会利益的事项将不通过理事会设定。

    在Finchain系统中,见证人负责收集网络运行时广播出来的各种交易并打包到区块中,其工作类似于比特币网络中的矿工,在采用 PoW(工作量证明)的比特币网络中,由一种获奖概率取决于哈希算力的抽彩票方式来决定哪个矿工节点产生下一个区块。而在采用 DPoS 机制的金融链网络中,通过理事会投票决定见证人的数量,由持币人投票来决定见证人人选。入选的活跃见证人按顺序打包交易并生产区块,在每一轮区块生产之后,见证人会在随机洗牌决定新的顺序后进入下一轮的区块生产。

    3. DPoS的应用实例

    比特股(bitshares) 采用DPoS。DPoS主要适用于联盟链。

    4.简图理解模式

    (四)PBFT(Practical Byzantine Fault Tolerance)实用拜占庭容错算法

    1. 基本介绍

    PBFT是一种基于严格数学证明的算法,需要经过三个阶段的信息交互和局部共识来达成最终的一致输出。三个阶段分别为预备 (pre-prepare)、准备 (prepare)、落实 (commit)。PBFT算法证明系统中只要有2/3比例以上的正常节点,就能保证最终一定可以输出一致的共识结果。换言之,在使用PBFT算法的系统中,至多可以容忍不超过系统全部节点数量1/3的失效节点 (包括有意误导、故意破坏系统、超时、重复发送消息、伪造签名等的节点,又称为”拜占庭”节点)。

    2. PBFT的应用实例

    著名联盟链Hyperledger Fabric v0.6采用的是PBFT,v1.0又推出PBFT的改进版本SBFT。PBFT主要适用于私有链和联盟链。

    3. 简图理解模式

    上图显示了一个简化的PBFT的协议通信模式,其中C为客户端,0 – 3表示服务节点,其中0为主节点,3为故障节点。整个协议的基本过程如下:

    (1) 客户端发送请求,激活主节点的服务操作;

    (2) 当主节点接收请求后,启动三阶段的协议以向各从节点广播请求;

    (a) 序号分配阶段,主节点给请求赋值一个序号n,广播序号分配消息和客户端的请求消息m,并将构造pre-prepare消息给各从节点;

    (b) 交互阶段,从节点接收pre-prepare消息,向其他服务节点广播prepare消息;

    (c) 序号确认阶段,各节点对视图内的请求和次序进行验证后,广播commit消息,执行收到的客户端的请求并给客户端响应。

    (3) 客户端等待来自不同节点的响应,若有m+1个响应相同,则该响应即为运算的结果;

    (五)DBFT(Delegated Byzantine Fault Tolerance)授权拜占庭容错算法

    1. 基本介绍

    DBFT建基于PBFT的基础上,在这个机制当中,存在两种参与者,一种是专业记账的“超级节点”,一种是系统当中不参与记账的普通用户。普通用户基于持有权益的比例来投票选出超级节点,当需要通过一项共识(记账)时,在这些超级节点中随机推选出一名发言人拟定方案,然后由其他超级节点根据拜占庭容错算法(见上文),即少数服从多数的原则进行表态。如果超过2/3的超级节点表示同意发言人方案,则共识达成。这个提案就成为最终发布的区块,并且该区块是不可逆的,所有里面的交易都是百分之百确认的。如果在一定时间内还未达成一致的提案,或者发现有非法交易的话,可以由其他超级节点重新发起提案,重复投票过程,直至达成共识。

    2. DBFT的应用实例

    国内加密货币及区块链平台NEO是 DBFT算法的研发者及采用者。

    3. 简图理解模式

    假设系统中只有四个由普通用户投票选出的超级节点,当需要通过一项共识时,系统就会从代表中随机选出一名发言人拟定方案。发言人会将拟好的方案交给每位代表,每位代表先判断发言人的计算结果与它们自身纪录的是否一致,再与其它代表商讨验证计算结果是否正确。如果2/3的代表一致表示发言人方案的计算结果是正确的,那么方案就此通过。

    如果只有不到2/3的代表达成共识,将随机选出一名新的发言人,再重复上述流程。这个体系旨在保护系统不受无法行使职能的领袖影响。

    上图假设全体节点都是诚实的,达成100%共识,将对方案A(区块)进行验证。

    鉴于发言人是随机选出的一名代表,因此他可能会不诚实或出现故障。上图假设发言人给3名代表中的2名发送了恶意信息(方案B),同时给1名代表发送了正确信息(方案A)。

    在这种情况下该恶意信息(方案B)无法通过。中间与右边的代表自身的计算结果与发言人发送的不一致,因此就不能验证发言人拟定的方案,导致2人拒绝通过方案。左边的代表因接收了正确信息,与自身的计算结果相符,因此能确认方案,继而成功完成1次验证。但本方案仍无法通过,因为不足2/3的代表达成共识。接着将随机选出一名新发言人,重新开始共识流程。

    上图假设发言人是诚实的,但其中1名代表出现了异常;右边的代表向其他代表发送了不正确的信息(B)。

    在这种情况下发言人拟定的正确信息(A)依然可以获得验证,因为左边与中间诚实的代表都可以验证由诚实的发言人拟定的方案,达成2/3的共识。代表也可以判断到底是发言人向右边的节点说谎还是右边的节点不诚实。

    (六)SCP (Stellar Consensus Protocol ) 恒星共识协议

    1. 基本介绍

    SCP 是 Stellar (一种基于互联网的去中心化全球支付协议) 研发及使用的共识算法,其建基于联邦拜占庭协议 (Federated Byzantine Agreement) 。传统的非联邦拜占庭协议(如上文的PBFT和DBFT)虽然确保可以通过分布式的方法达成共识,并达到拜占庭容错 (至多可以容忍不超过系统全部节点数量1/3的失效节点),它是一个中心化的系统 — 网络中节点的数量和身份必须提前知晓且验证过。而联邦拜占庭协议的不同之处在于它能够去中心化的同时,又可以做到拜占庭容错。

    […]

    (七)RPCA(Ripple Protocol Consensus Algorithm)Ripple共识算法

    1. 基本介绍

    RPCA是Ripple(一种基于互联网的开源支付协议,可以实现去中心化的货币兑换、支付与清算功能)研发及使用的共识算法。在 Ripple 的网络中,交易由客户端(应用)发起,经过追踪节点(tracking node)或验证节点(validating node)把交易广播到整个网络中。追踪节点的主要功能是分发交易信息以及响应客户端的账本请求。验证节点除包含追踪节点的所有功能外,还能够通过共识协议,在账本中增加新的账本实例数据。

    Ripple 的共识达成发生在验证节点之间,每个验证节点都预先配置了一份可信任节点名单,称为 UNL(Unique Node List)。在名单上的节点可对交易达成进行投票。共识过程如下:

    (1) 每个验证节点会不断收到从网络发送过来的交易,通过与本地账本数据验证后,不合法的交易直接丢弃,合法的交易将汇总成交易候选集(candidate set)。交易候选集里面还包括之前共识过程无法确认而遗留下来的交易。

    (2) 每个验证节点把自己的交易候选集作为提案发送给其他验证节点。

    (3) 验证节点在收到其他节点发来的提案后,如果不是来自UNL上的节点,则忽略该提案;如果是来自UNL上的节点,就会对比提案中的交易和本地的交易候选集,如果有相同的交易,该交易就获得一票。在一定时间内,当交易获得超过50%的票数时,则该交易进入下一轮。没有超过50%的交易,将留待下一次共识过程去确认。

    (4) 验证节点把超过50%票数的交易作为提案发给其他节点,同时提高所需票数的阈值到60%,重复步骤(3)、步骤(4),直到阈值达到80%。

    (5) 验证节点把经过80%UNL节点确认的交易正式写入本地的账本数据中,称为最后关闭账本(last closed ledger),即账本最后(最新)的状态。

    在Ripple的共识算法中,参与投票节点的身份是事先知道的,因此,算法的效率比PoW等匿名共识算法要高效,交易的确认时间只需几秒钟。这点也决定了该共识算法只适合于联盟链或私有链。Ripple共识算法的拜占庭容错(BFT)能力为(n-1)/5,即可以容忍整个网络中20%的节点出现拜占庭错误而不影响正确的共识。

    2. 简图理解模式

    共识过程节点交互示意图:

    共识算法流程:

    (八)POOL验证池共识机制

    Pool验证池共识机制是基于传统的分布式一致性算法(Paxos和Raft)的基础上开发的机制。Paxos算法是1990年提出的一种基于消息传递且具有高度容错特性的一致性算法。过去, Paxos一直是分布式协议的标准,但是Paxos难于理解,更难以实现。Raft则是在2013年发布的一个比Paxos简单又能实现Paxos所解决问题的一致性算法。Paxos和Raft达成共识的过程皆如同选举一样,参选者需要说服大多数选民(服务器)投票给他,一旦选定后就跟随其操作。Paxos和Raft的区别在于选举的具体过程不同。而Pool验证池共识机制即是在这两种成熟的分布式一致性算法的基础上,辅之以数据验证的机制。

    二、区块链中现代密码学

    1983年 - David Chaum描述的盲签

    1997年 - Adam Back发明的HashCash(工作证明制度的一个例子)

    2001年 - Ron Rivest,Adi Shamir和Yael Tauman向加密社区提出了环签名

    2004年 - Patrick P. Tsang和Victor K.提出使用环签名系统进行投票和电子现金;

    2008年 - 由Satoshi Nakamoto出版的Bitcoin白皮书

    2011年 - 比特币系统中的匿名分析,Fergal Reid和Martin Harrigan

    2012 - 目的地址比特币匿名(CryptoNote中的一次性地址)。

    安全多方计算起源于1982年姚期智的百万富翁问题。后来Oded Goldreich有比较细致系统的论述。

    姚氏百万富翁问题是由华裔计算机科学家、图灵奖获得者姚启智教授首先提出的。该问题表述为:两个百万富翁Alice和Bob想知道他们两个谁更富有,但他们都不想让对方知道自己财富的任何信息。该问题有一些实际应用:假设Alice希望向Bob购买一些商品,但她愿意支付的最高金额为x元;Bob希望的最低卖出价为y元。Alice和Bob都非常希望知道x与y哪个大。如果x>y,他们都可以开始讨价还价;如果z<y,他们就不用浪费口舌。但他们都不想告诉对方自己的出价,以免自己在讨价还价中处于不利地位。

    该方案用于对两个数进行比较,以确定哪一个较大。Alice知道一个整数i;Bob知道一个整数j, Alice与B0b希望知道究竟i>=j还是j>i,但都不想让对方知道自己的数。为简单起见,假设j与i的范围为[1,100】。Bob有一个公开密钥Eb和私有密钥Db。

    安全多方计算(Secure Multi-Party Computation)的研究主要是针对无可信第三方的情况下, 如何安全地计算一个约定函数的问题. 安全多方计算在电子选举、电子投票、电子拍卖、秘密共享、门限签名等场景中有着重要的作用。

    同态加密(Homomorphic Encryption)是很久以前密码学界就提出来的一个Open Problem。早在1978年,Ron Rivest, Leonard Adleman, 以及Michael L. Dertouzos就以银行为应用背景提出了这个概念[RAD78]。对,你没有看错,Ron Rivest和Leonard Adleman分别就是著名的RSA算法中的R和A。

    什么是同态加密?提出第一个构造出全同态加密(Fully Homomorphic Encryption)[Gen09]的Craig Gentry给出的直观定义最好:A way to delegate processing of your data, without giving away access to it.

    这是什么意思呢?一般的加密方案关注的都是数据存储安全。即,我要给其他人发个加密的东西,或者要在计算机或者其他服务器上存一个东西,我要对数据进行加密后在发送或者存储。没有密钥的用户,不可能从加密结果中得到有关原始数据的任何信息。只有拥有密钥的用户才能够正确解密,得到原始的内容。我们注意到,这个过程中用户是不能对加密结果做任何操作的,只能进行存储、传输。对加密结果做任何操作,都将会导致错误的解密,甚至解密失败。

    同态加密方案最有趣的地方在于,其关注的是数据处理安全。同态加密提供了一种对加密数据进行处理的功能。也就是说,其他人可以对加密数据进行处理,但是处理过程不会泄露任何原始内容。同时,拥有密钥的用户对处理过的数据进行解密后,得到的正好是处理后的结果。

    有点抽象?我们举个实际生活中的例子。有个叫Alice的用户买到了一大块金子,她想让工人把这块金子打造成一个项链。但是工人在打造的过程中有可能会偷金子啊,毕竟就是一克金子也值很多钱的说… 因此能不能有一种方法,让工人可以对金块进行加工(delegate processing of your data),但是不能得到任何金子(without giving away access to it)?当然有办法啦,Alice可以这么做:Alice将金子锁在一个密闭的盒子里面,这个盒子安装了一个手套。工人可以带着这个手套,对盒子内部的金子进行处理。但是盒子是锁着的,所以工人不仅拿不到金块,连处理过程中掉下的任何金子都拿不到。加工完成后。Alice拿回这个盒子,把锁打开,就得到了金子。

    这里面的对应关系是:盒子:加密算法盒子上的锁:用户密钥将金块放在盒子里面并且用锁锁上:将数据用同态加密方案进行加密加工:应用同态特性,在无法取得数据的条件下直接对加密结果进行处理开锁:对结果进行解密,直接得到处理后的结果同态加密哪里能用?这几年不是提了个云计算的概念嘛。同态加密几乎就是为云计算而量身打造的!我们考虑下面的情景:一个用户想要处理一个数据,但是他的计算机计算能力较弱。这个用户可以使用云计算的概念,让云来帮助他进行处理而得到结果。但是如果直接将数据交给云,无法保证安全性啊!于是,他可以使用同态加密,然后让云来对加密数据进行直接处理,并将处理结果返回给他。这样一来:用户向云服务商付款,得到了处理的结果;云服务商挣到了费用,并在不知道用户数据的前提下正确处理了数据;

    聚合签名由Boneh等人提出,主要是通过聚合多个签名为一个签名,来提高签名与验证的效率。要对多个用户的数据进行签名,聚合签名能够极大地降低签名计算复杂度。CL就是聚合签名。

    零知识证明过程有两个参与方,一方叫证明者,一方叫验证者。证明者掌握着某个秘密,他想让验证者相信他掌握着秘密,但是又不想泄漏这个秘密给验证者。

    双方按照一个协议,通过一系列交互,最终验证者会得出一个明确的结论,证明者是或不掌握这个秘密。

    对于比特币的例子,一笔转帐交易合法与否,其实只要证明三件事:

    发送的钱属于发送交易的人

    发送者发送的金额等于接收者收到金额

    发送者的钱确实被销毁了

    整个证明过程中,矿工其实并不关心具体花掉了多少钱,发送者具体是谁,接受者具体是谁。矿工只关心系统的钱是不是守恒的。

    zcash 就是用这个思路实现了隐私交易。

    零知识证明的三条性质对应:

    (1)完备性。如果证明方和验证方都是诚实的,并遵循证明过程的每一步,进行正确的计算,那么这个证明一定是成功的,验证方一定能够接受证明方。

    (2)合理性。没有人能够假冒证明方,使这个证明成功。

    (3)零知识性。证明过程执行完之后,验证方只获得了“证明方拥有这个知识”这条信息,而没有获得关于这个知识本身的任何一点信息。

    只有环成员,没有管理者,不需要环成员之间的合作,签名者利用自己的私钥和集合中其他成员的公钥就能独立的进行签名,不需要其他人的帮助,集合中的其他成员可能不知道自己被包含在了其中。

    环签名可以被用作成一种泄露秘密的方式,例如,可以使用环形签名来提供来自“白宫高级官员”的匿名签名,而不会透露哪个官员签署了该消息。 环签名适用于此应用程序,因为环签名的匿名性不能被撤销,并且因为用于环签名的组可以被即兴创建。

    1)密钥生成。为环中每个成员产生一个密钥对(公钥PKi,私钥SKi)

    2)签名。签名者用自己的私钥和任意n个环成员的公钥为消息m生成签名a

    3)签名验证。签名者根据环签名和消息m,验证签名是否是环中成员所签。如果有效就接收,如果无效就丢弃。

    群签名的一般流程

    盲数字签名(Blind Signature)简称盲签名——是一种数字签名的方式,在消息内容被签名之前,对于签名者来说消息内容是不可见的。1982年大卫·乔姆首先提出了盲签名的概念。盲签名因为具有盲性这一特点,可以有效保护所签署消息的具体内容,所以在电子商务和电子选举等领域有着广泛的应用。

    类比例子:对文件签名就是通过在信封里放一张复写纸,签名者在信封上签名时,他的签名便透过复写纸签到文件上。

    所谓盲签名,就是先将隐蔽的文件放进信封里,而除去盲因子的过程就是打开这个信封,当文件在一个信封中时,任何人不能读它。对文件签名就是通过在信封里放一张复写纸,签名者在信封上签名时,他的签名便透过复写纸签到文件上。

    一般来说,一个好的盲签名应该具有以下的性质:

    不可伪造性。除了签名者本人外,任何人都不能以他的名义生成有效的盲签名。这是一条最基本的性质。

    不可抵赖性。签名者一旦签署了某个消息,他无法否认自己对消息的签名。

    盲性。签名者虽然对某个消息进行了签名,但他不可能得到消息的具体内容。

    不可跟踪性。一旦消息的签名公开后,签名者不能确定自己何时签署的这条消息。

    满足上面几条性质的盲签名,被认为是安全的。这四条性质既是我们设计盲签名所应遵循的标准,又是我们判断盲签名性能优劣的根据。

    另外,方案的可操作性和实现的效率也是我们设计盲签名时必须考虑的重要

    因素。一个盲签名的可操作性和实现速度取决于以下几个方面:

    1,密钥的长度;

    2,盲签名的长度;

    3,盲签名的算法和验证算法。

    盲签名具体步骤

    1,接收者首先将待签数据进行盲变换,把变换后的盲数据发给签名者。

    2,经签名者签名后再发给接收者。

    3,接收者对签名再作去盲变换,得出的便是签名者对原数据的盲签名。

    4,这样便满足了条件①。要满足条件②,必须使签名者事后看到盲签名时不能与盲数据联系起来,这通常是依靠某种协议来实现的。

    三、POA(Proof of Activity)区块链共识算法

    POA(Proof of Activity)算法是一个区块链的共识算法,基本原理是结合POW(Proof of work)和POS(Proof of stake)算法的特点进行工作,POW算法和POS算法的具体内容可以参考:

    POW算法 : https://www.jianshu.com/p/b23cbafbbad2

    POS算法 : https://blog.csdn.net/wgwgnihao/article/details/80635162

    POA算法相比于其他算法可以改进网络拓扑,维持在线节点比例,需求更少的交易费同时减少共识算法过程中的能量损耗。

    POA算法需求的网络中同样包含两类节点,矿工和普通参与者,其中普通参与者不一定一直保持在线。POA算法首先由矿工构造区块头,由块头选出N个币,这N个币的所有者参与后续的校验和生成块的过程。

    从这里可以看到POA算法不仅与算力有关,后续的N个参与者的选举则完全由参与者在网络中所拥有的币的总数量决定。拥有越多币的参与者越有机会被选为N个后续的参与者。而后续N个参与者参与的必要条件是这N个参与者必须在线,这也是POA命名的由来,POA算法的维护取决于网络中的活跃节点(Active)。

    POA算法的一个理想的基本流程是,类似于POW协议,矿工构造出一个符合难度要求的块头,通过矿工得到的块头计算衍生出N个币的编号,从区块链中追溯可以得到这几个币目前所述的参与者。矿工将这个块头发送给这N个参与者,其中前N-1个参与者对这个块进行校验和签名,最后第N个参与者校验并将交易加入到该块中,将这个区块发布出去,即完成一个区块的出块。

    一个理想过程如下图所示:

    在实际运行中,无法保证网络上所有参与者都在线,而不在线的参与者则无法进行校验和签名,这个无法被校验和签名的块头则会被废弃。

    即在实际运行中,应该是一个矿工构造出块头后广播给各个参与者签名,同时继续重新构造新的块头,以免上一个块头衍生的N个参与者存在有某一个没有在线,而导致块头被废弃。

    因此,在这种情况下,一个块是否被确认不仅与矿工的计算能力有关同时也与网络上的在线比例有关。

    与纯POW相比,在与比特币(POW)同样10分钟出一个块的情况下,POA由于会有参与者不在线而产生的损耗,因此,10分钟内矿工可以构造的块的数量会更多,即块头的难度限制会降低,那么矿工在挖矿过程中会造成的能量损耗也会降低。

    与纯POS相比,可以看到POA的出块流程并不会将构造区块过程中的相关信息上链,可以明显减少区块链上用于维护协议产生的冗余信息的量。

    本节对上诉协议中一些参数设置进行分析

    在矿工构造出块头后对块头进行校验和区块构造的N个参与者的数量选定比较类似于比特币中每一个块的出块时间的选取。比特币中选择了10分钟作为每一个块的期望出块时间并通过动态调节难度来适应。

    这里N的取值同样可以选择选定值或者动态调节。动态调节需要更加复杂的协议内容,同时可能会带来区块链的数据膨胀,而复杂的协议也增加了攻击者攻击的可能性。另外暂时没有办法证明动态调节可以带来什么好处。静态调节在后续的分析(4 安全分析)中可以得到N=3的取值是比较合适的。

    从上面的描述可以看到,构造新的区块的除了矿工还有从块头中衍生出来的N个币所有者。在构造出一个新的区块后,这些参与者同样应该收到一定的激励,以维持参与者保持在线状态。

    矿工与参与者之间的非配比例与参与者的在线状态相关。给予参与者的激励与参与者保持在线状态的热情密切相关,越多参与者保持在线状态,能更好地维持网络的稳定。因此,可以在网络上在线参与者不够多的时候,提高参与者得到的激励分成比例,从而激发更多的参与者上线。

    如何确定当前参与者的在线情况呢?可以最后第N个参与者构造区块时,将构造出来但是被废弃的块头加入到区块中,如果被丢弃的块头数量过多,说明在线人数过低,应当调节分成比例。

    同时最后第N个参与者与其他参与者的分成同样需要考虑,第N个参与者需要将交易加入区块中,即需要维护UTXO池,同时第N个参与者还需要将被丢弃的块头加入新构建的区块中。

    为了激励其将废弃区块头加入新构建的区块中,可以按照加入的区块头,适当增加一点小的激励。虽然加入更多的区块头,可以在下一轮的时候增加分成的比例,应当足够激励参与者往区块中加入未使用的块头了(这里参与者不可能为了增加分成而更多地加入区块头,每一个区块头都意味着一位矿工的工作量)。

    一个参与者如果没有维护UTXO池则无法构造区块,但是可以参与前N-1个的签名,因此为了激励参与者维护UTXO池,作为最后一个构造区块的参与者,必须给予更多的激励,比如是其他参与者的两倍。

    从3.2的描述中可以知道一个用户必须在线且维护UTXO池才可能尽可能地获得利益。这种机制势必会导致一些用户将自己的账户托管给一个中心化的机构。这个机构一直保持在线,并为用户维护其账户,在被选为构造区块的参与者时参与区块的构建并获取利益。最后该机构将收益按照某种形式进行分成。

    上面说到参与者必须用自己的密钥进行签名,而托管给某个机构后,这个机构在可以用这个密钥签名构造区块的同时,也有可能使用这个密钥消费用户的财产。这里可以采用一种有限花销的密钥,这个密钥有两个功能,一个是将账户中的部分财产消费出去,另一个是将所有财产转移到一个指定账户。在托管的时候可以使用这个密钥,在被通知部分财产被花费后可以立即将所有财产转移到自己的另一个账户下,以保证财产的安全。

    从上面的分析可以看到,POA的安全性与攻击者所拥有的算力和攻击者所拥有的股权有关。假设攻击者拥有的在线股权占比为 ,则攻击者的算力需要达到其他所有算力的 倍才能达成分叉。假设攻击者股权总占比为 ,网络中诚实用户的在线比例为 ,则攻击者的算力需要达到其他所有算力的 倍才能达成攻击。

    攻击的分析表格如下:

    从上文的分析可以看到,POA算法相比于其他算法可以改进网络拓扑,维持在线节点比例,需求更少的交易费同时减少共识算法过程中的能量损耗。同时,PoA协议的攻击成本要高于比特币的纯PoW协议。

    参考文献:Proof of Activity: Extending Bitcoin’s Proof of Work via Proof of Stake

    四、粮食类原料烹饪初加工时应注意哪些问题?

    1)尽量减少淘米次数,一般不应该3次,淘米也不宜用力搓。淘米应用 凉水,侵泡时间不宜过长。

    (2)不要吃“捞饭”即在米煮到半熟后捞出再蒸,扔掉溶于米汤中大量B 族维生素。做米饭应采用蒸,煮的方法,如做捞饭,米汤也应当饮用。

    (3)烹煮时不要加碱。因为碱容易加速维生素C及B族维生素的破坏。一 般在制作面食时,蒸、烤、烙的方法带来的B簇维生素的损失较小,但用高温油炸时损失较大。

    以上就是关于区块链断链丢弃相关问题的回答。希望能帮到你,如有更多相关问题,您也可以联系我们的客服进行咨询,客服也会为您讲解更多精彩的知识和内容。


    推荐阅读:

    百度旗下的区块链应用(百度旗下的区块链应用有)

    杭州萍水街属于哪个区(杭州萍水街属于哪个区块)

    景观设计中如何划分区块(景观设计中如何划分区块类型)

    杭州综合频道直播在线(杭州综合频道直播在线播放)

    年会感谢老板的文案(年会感谢老板的文案简短)