HOME 首页
SERVICE 服务产品
XINMEITI 新媒体代运营
CASE 服务案例
NEWS 热点资讯
ABOUT 关于我们
CONTACT 联系我们
创意岭
让品牌有温度、有情感
专注品牌策划15年

    数据分析的目标(bi数据分析)

    发布时间:2023-04-08 19:50:37     稿源: 创意岭    阅读: 73        

    大家好!今天让创意岭的小编来大家介绍下关于数据分析的目标的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。

    开始之前先推荐一个非常厉害的Ai人工智能工具,一键生成原创文章、方案、文案、工作计划、工作报告、论文、代码、作文、做题和对话答疑等等

    只需要输入关键词,就能返回你想要的内容,越精准,写出的就越详细,有微信小程序端、在线网页版、PC客户端

    官网:https://ai.de1919.com

    创意岭作为行业内优秀的企业,服务客户遍布全球各地,如需了解SEO相关业务请拨打电话175-8598-2043,或添加微信:1454722008

    本文目录:

    数据分析的目标(bi数据分析)

    一、如何开展数据分析

    1、数据分析启动前,要先设定明确、可拆解的目标,需要清除知道自己做数据分析的最终目标。

    2、数据挖掘,善用工具可以带来大量的数据积累。

    3、运营者需要对数据保持高度敏感,在中小企业还没有技术能力去做数据监控的时候,要通过报表、明细去洞察数据的异常。

    4、数据处理。挖掘数据的过程中,很多数据属于原始数据,并不是每个数据都对当前分析目标有用,那就需要对数据进行加工、整理。

    5、数据处理过后,就可以开始数据分析了。数据分析需要聚焦在业务、产品和用户上,不要为了分析而分析。

    二、数据分析有哪些关键步骤?

    1.决定目标

    数据价值链的第一步必须先有数据,然后业务部门已经决定数据科学团队的目标。这些目标通常需要进行大量的数据收集和分析。因为我们正在研究数据驱动决策,我们需要一个可衡量的方式知道业务正向着目标前进。

    2.确定业务标杆

    业务应该做出改变来改善关键指标从而达到它们的目标。如果没有什么可以改变,就不可能有进步,,论多少数据被收集和分析。确定目标、指标在项目早期为项目提供了方向,避免无意义的数据分析。

    3.数据收集

    撒一张数据的大网,更多数据,特别是数据从不同渠道找到更好的相关性,建立更好的模型,找到更多可行的见解。大数据经济意味着个人记录往往是无用的,在每个记录可供分析才可以提供真正的价值。

    4.数据清洗

    数据分析的第一步是提高数据质量。数据科学家处理正确的拼写错误,处理缺失数据和清除无意义的信息。在数据价值链中这是最关键的步骤,即使最好的数据值分析如果有垃圾数据这将会产生错误结果和误导。

    5.数据建模

    数据科学家构建模型,关联数据与业务成果和提出建议并确定关于业务价值的变化这是其中的第一步。这就是数据科学家成为关键业务的独特专长,通过数据,建立模型,预测业务成果。

    6.数据科学团队

    数据科学家是出了名的难以雇用,这是一个好主意来构建一个数据科学团队通过那些有一个高级学位统计关注数据建模和预测,而团队的其他人,合格的基础设施工程师,软件开发人员和ETL 专家,建立必要的数据收集基础设施、数据管道和数据产品,使数据通过报告和仪表盘来显示结果和业务模型。

    7.优化和重复

    数据价值链是一个可重复的过程,通过连续改进价值链的业务和数据本身。基于模型的结果,企业将通过数据科学团队测量的结果来驱动业务。

    三、数据分析的六大黄金法则

    数据分析的六大黄金法则

    为什么你的数据分析成果总是难以落地?数据分析的价值总是远远低于预期?相信看完这篇文章,每个人都能找到一个属于自己的答案。本人先后在电力、军工、金融等行业担任数据分析师,有多年行业经验。从平时的工作中总结出以下六个数据分析时要注意的原则,希望能对大家有所帮助。

    1、遵循数据分析标准流程

    数据分析遵循一定的流程,不仅可以保证数据分析每一个阶段的工作内容有章可循,而且还可以让分析最终的结果更加准确,更加有说服力。一般情况下,数据分析分为以下几个步骤:

    1)业务理解,确定目标、明确分析需求;

    2)数据理解,收集原始数据、描述数据、探索数据、检验数据质量;

    3)数据准备,选择数据、清洗数据、构造数据、整合数据、格式化数据;

    4)建立模型,选择建模技术、参数调优、生成测试计划、构建模型;

    5)评估模型,对模型进行较为全面的评价,评价结果、重审过程;

    6)成果部署,分析结果应用。

    2、明确数据分析目标

    在数据分析前期,要做到充分沟通、理解业务规则、关注业务痛点、了解用户需求、换位思考,明确为什么要做数据分析,要达到一个什么目标。这样才能保证后续的收集数据、确定分析主题、分析数据、分析结果应用等工作都能够围绕分析目标开展,保证最终能够从整体目标的角度去总结分析成果。

    3、业务与数据结合确定分析主题

    以解决业务问题为目标,以数据现状为基础,确定分析主题。前期要做好充分的准备,以业务问题为导向,以业务梳理为重点,进行多轮讨论,分析主题避免过大,针对业务痛点,实现知现状、明原因、可预测、有价值。另外,分析数据的范围除了重点关注的业务指标数据,还要尽量考虑扩展外延数据,比如经济指标数据、气象数据、财务数据等。确定分析主题之前,要进行数据支撑情况的初步判断,避免中途发现数据质量或者数据范围不能支撑分析工作的情况发生。确定分析主题之后,详细论证分析可行性,保证分析过程的清晰性,才能开始分析工作。

    4、多种分析方法结合

    分析过程中尽量运用多种分析方法,以提高分析的准确性和可靠性。例如,运用定性定量相结合的分析方法对于数据进行分析;融合交互式自助BI、数据挖掘、自然语言处理等多种分析方法;高级分析和可视化分析相结合等。

    5、选择合适的分析工具

    工欲善其事,必先利其器,数据分析过程中要选择合适的分析工具做分析。SPSS、SAS、Alteryx、美林TEMPO、Repidminer、R、Python等这几种工具都是业界比较认可的数据分析产品。它们各有其优势,SPSS较早进入国内市场,发展已经相对成熟,有大量参考书可供参考,操作上容易上手,简单易学。SAS由于其功能强大而且可以编程,很受高级用户的欢迎。Alteryx工作流打包成应用,为小企业直接提供应用,地理数据分析功能强大。美林的Tempo功能全面,在高级分析和可视化分析相结合上具有明显优势。Repidminer 易用性和用户体验做得很好,并且内置了很多案例用户可直接替换数据源去使用。R 是开源免费的,具有良好的扩展性和丰富的资源,涵盖了多种行业中数据分析的几乎所有方法,分析数据更灵活。Python,有各种各样功能强大的库,做数据处理很方便,跟MATLAB很像。

    6、分析结论尽量图表化

    经过严谨推导得出的结论,首先要精简明确,3-5条即可。其次要与业务问题结合,给出解决方案或建议方案。第三尽量图表化,要增强其可读性。

    某企业KPI分析报告

    数据分析过程中,除了以上六条原则,还要避免以下3种情况:

    1)时间安排不合理

    在开始分析工作之前,一定要做一个明确的进度计划,时间分配的原则是:数据收集、整理及建模占70%,数据可视化展现及分析报告占25%,其他占5%。(数据的收集、整理和建模的过程,是反复迭代的过程)

    2)数据源选择不合理

    一般企业中的数据来源有很多,SAP、TMS、CRM及各部门业务系统,每个渠道的数据各有特点。这时,应该慎重考虑从哪个渠道获取数据更加快捷有效。数据源选择不合理,不仅影响结论的可靠性,而且有返工的风险。

    3)沟通不充分

    无论是分析人员内部的沟通还是与外部相关人员的沟通,都是至关重要的。与外部人员沟通效不顺畅,可能造成前期需求不清,中间业务逻辑混乱,最终导致数据分析结果差强人意。与内部人员沟通效率低,可能造成分析进度滞后,分析工作开展不畅等诸多问题,直接影响分析效果。

    对于数据分析师,分析经验的积累与专业知识的提升同样重要,因为有些问题不是只用专业知识就能解决的,所以在平时的工作中要有意识的去学习业务知识、掌握先进的分析工具,做一个有心人!

    四、收集数据通常可以采用的方法有哪三种???

    1、访问调查:访问调查又称派员调查,它是调查者与被调查者通过面对面地交谈从而得到所需资料的调查方法。

    2、邮寄调查:邮寄调查是通过邮寄或其他方式将调查问卷送至被调查者,由被调查者填写,然后将问卷寄回或投放到指定收集点的一种调查方法。

    3、电话调查:电话调查是调查人员利用电话通受访者进行语言交流,从而获得信息的一种调查方式。电话调查优点是时效快、费用低;不足是调查问题的数量不能过多。

    数据分析的目标(bi数据分析)

    扩展资料:

    收集数据的步骤:

    1、确定数据分析的目标

    没有目标的数据分析才真的是无从下手。有了明确的目标导向后,数据收集的范围和着手点就比较明确了。现实工作当中,一般都是遇到了问题,需要去解决问题的时候,想出来的解决方案就可以成为数据分析的目标。

    2、分析需要收集哪些数据

    明确了数据分析的目标之后,就需要确定采集哪些数据来分析。目标可以告诉我们范围,比如取消订单的操作场景下会涉及到哪些页面;进一步的要确认这些页面上有哪些表单数据、操作按钮、页面跳转是需要记录操作事件的。

    考虑每个数据收集点的成本

    数据埋点是有成本的,最直观的就是在性能上会带来比较大的影响,现在也有一些无埋点的采集技术,本人没有做过相应研究,这里只以需要埋点采集的来说明。

    参考资料来源:百度百科-统计数据

    以上就是关于数据分析的目标相关问题的回答。希望能帮到你,如有更多相关问题,您也可以联系我们的客服进行咨询,客服也会为您讲解更多精彩的知识和内容。


    推荐阅读:

    抖音数据查询平台(抖查查)

    网络营销大数据发展趋势(网络营销大数据发展趋势研究)

    数据中心公司(深智城大数据中心公司)

    抖音短剧推广授权(抖音短剧推广授权平台有哪些)

    艺术生考研究生要考哪些科目(美术生考研究生要考哪些科目)