3、灰狼算法
灰狼算法为什么编码简单(灰狼算法为什么编码简单一些)
大家好!今天让创意岭的小编来大家介绍下关于灰狼算法为什么编码简单的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。
开始之前先推荐一个非常厉害的Ai人工智能工具,一键生成原创文章、方案、文案、工作计划、工作报告、论文、代码、作文、做题和对话答疑等等
只需要输入关键词,就能返回你想要的内容,越精准,写出的就越详细,有微信小程序端、在线网页版、PC客户端
创意岭作为行业内优秀的企业,服务客户遍布全球各地,如需了解SEO相关业务请拨打电话175-8598-2043,或添加微信:1454722008
本文目录:
一、智能优化算法:灰狼优化算法
@[toc]
摘要:受 灰 狼 群 体 捕 食 行 为 的 启 发,Mirjalili等[1]于 2014年提出了一种新型群体智能优化算法:灰狼优化算法。GWO通过模拟灰狼群体捕食行为,基于狼群群体协作的机制来达到优化的目的。 GWO算法具有结构简单、需要调节的参数少,容易实现等特点,其中存在能够自适应调整的收敛因子以及信息反馈机制,能够在局部寻优与全局搜索之间实现平衡,因此在对问题的求解精度和收敛速度方面都有良好的性能。
灰狼属于犬科动物,被认为是顶级的掠食者,它们处于生物圈食物链的顶端。灰狼大多喜欢群居,每个群体中平均有5-12只狼。特别令人感兴趣的是,它们具有非常严格的社会等级层次制度,如图1所示。金字塔第一层为种群中的领导者,称为 α 。在狼群中 α 是具有管理能力的个体,主要负责关于狩猎、睡觉的时间和地方、食物分配等群体中各项决策的事务。金字塔第二层是 α 的智囊团队,称为 β 。 β 主要负责协助α 进行决策。当整个狼群的 α 出现空缺时,β 将接替 α 的位置。 β 在狼群中的支配权仅次于 α,它将 α 的命令下达给其他成员,并将其他成员的执行情况反馈给 α 起着桥梁的作用。金字塔第三层是 δ ,δ 听从 α 和 β 的决策命令,主要负责侦查、放哨、看护等事务。适应度不好的 α 和 β 也会降为 δ 。金字塔最底层是 ω ,主要负责种群内部关系的平衡。
<center>图1.灰狼的社会等级制度
此外,集体狩猎是灰狼的另一个迷人的社会行为。灰狼的社会等级在群体狩猎过程中发挥着重要的作用,捕食的过程在 α 的带领下完成。灰狼的狩猎包括以下 3个主要部分:
1)跟踪、追逐和接近猎物;
2)追捕、包围和骚扰猎物,直到它停止移动;
3)攻击猎物
在狩猎过程中,将灰狼围捕猎物的行为定义如下:
式(1)表示个体与猎物间的距离,式(2)是灰狼的位置更新公式。其中, 是目前的迭代代数, 和 是系数向量, 和 分别是猎物的位置向量和灰狼的位置向量。 和 的计算公式如下:
其中, 是收敛因子,随着迭代次数从2线性减小到0, 和 的模取[0,1]之间的随机数。
灰狼能够识别猎物的位置并包围它们。当灰狼识别出猎物的位置后,β 和 δ 在 α 的带领下指导狼群包围猎物。在优化问题的决策空间中,我们对最佳解决方案(猎物的位置)并不了解。因此,为了模拟灰狼的狩猎行为,我们假设 α ,β 和 δ 更了解猎物的潜在位置。我们保存迄今为止取得的3个最优解决方案,并利用这三者的位置来判断猎物所在的位置,同时强迫其他灰狼个体(包括 ω )依据最优灰狼个体的位置来更新其位置,逐渐逼近猎物。狼群内个体跟踪猎物位置的机制如图2所示。
<center>图2.GWO 算法中灰狼位置更新示意图
灰狼个体跟踪猎物位置的数学模型描述如下:
其中, 分别表示分别表示 α , β 和 δ 与其他个体间的距离。 分别代表 α , β 和 δ 的当前位置; 是随机向量, 是当前灰狼的位置。
式(6)分别定义了狼群中 ω 个体朝向 α ,β 和 δ 前进的步长和方向,式(7)定义了 ω 的最终位置。
当猎物停止移动时,灰狼通过攻击来完成狩猎过程。为了模拟逼近猎物, 的值被逐渐减小,因此 的波动范围也随之减小。换句话说,在迭代过程中,当 的值从2线性下降到0时,其对应的 的值也在区间[-a,a]内变化。如图3a所示,当 的值位于区间内时,灰狼的下一位置可以位于其当前位置和猎物位置之间的任意位置。当 时,狼群向猎物发起攻击(陷入局部最优)。
灰狼根据 α ,β 和 δ 的位置来搜索猎物。灰狼在寻找猎物时彼此分开,然后聚集在一起攻击猎物。基于数学建模的散度,可以用 大于1 或小于-1 的随机值来迫使灰狼与猎物分离,这强调了勘探(探索)并允许 GWO 算法全局搜索最优解。如图3b所示, 强迫灰狼与猎物(局部最优)分离,希望找到更合适的猎物(全局最优)。GWO 算法还有另一个组件 来帮助发现新的解决方案。由式(4)可知, 是[0,2]之间的随机值。 表示狼所在的位置对猎物影响的随机权重, 表示影响权重大,反之,表示影响权重小。这有助于 GWO算法更随机地表现并支持探索,同时可在优化过程中避免陷入局部最优。另外,与 不同 是非线性减小的。这样,从最初的迭代到最终的迭代中,它都提供了决策空间中的全局搜索。在算法陷入了局部最优并且不易跳出时, 的随机性在避免局部最优方面发挥了非常重要的作用,尤其是在最后需要获得全局最优解的迭代中。
<center>图4.算法流程图
[1] Seyedali Mirjalili,Seyed Mohammad Mirjalili,Andrew Lewis. Grey Wolf Optimizer[J]. Advances in Engineering Software,2014,69.
[2] 张晓凤,王秀英.灰狼优化算法研究综述[J].计算机科学,2019,46(03):30-38.
https://mianbaoduo.com/o/bread/Z5ecmZc=
文献复现:
文献复现:基于翻筋斗觅食策略的灰狼优化算法(DSFGWO)
[1]王正通,程凤芹,尤文,李双.基于翻筋斗觅食策略的灰狼优化算法[J/OL].计算机应用研究:1-5[2021-02-01]. https://doi.org/10.19734/j.issn.1001-3695.2020.04.0102 .
文献复现:基于透镜成像学习策略的灰狼优化算法(LIS-GWO)
[1]龙文,伍铁斌,唐明珠,徐明,蔡绍洪.基于透镜成像学习策略的灰狼优化算法[J].自动化学报,2020,46(10):2148-2164.
文献复现:一种优化局部搜索能力的灰狼算法(IGWO)
[1]王习涛.一种优化局部搜索能力的灰狼算法[J].计算机时代,2020(12):53-55.
文献复现:基于自适应头狼的灰狼优化算法(ALGWO)
[1]郭阳,张涛,胡玉蝶,杜航.基于自适应头狼的灰狼优化算法[J].成都大学学报(自然科学版),2020,39(01):60-63+73.
文献复现:基于自适应正态云模型的灰狼优化算法 (CGWO)
[1]张铸,饶盛华,张仕杰.基于自适应正态云模型的灰狼优化算法[J/OL].控制与决策:1-6[2021-02-08]. https://doi.org/10.13195/j.kzyjc.2020.0233 .
文献复现:改进非线性收敛因子灰狼优化算法
[1]王正通,尤文,李双.改进非线性收敛因子灰狼优化算法[J].长春工业大学学报,2020,41(02):122-127.
文献复现:一种基于收敛因子改进的灰狼优化算法
[1]邢燕祯,王东辉.一种基于收敛因子改进的灰狼优化算法[J].网络新媒体技术,2020,9(03):28-34.
文献复现:基于莱维飞行和随机游动策略的灰狼算法(GWOM )
[1]李阳,李维刚,赵云涛,刘翱.基于莱维飞行和随机游动策略的灰狼算法[J].计算机科学,2020,47(08):291-296.
文献复现:一种改进的灰狼优化算法(EGWO)
[1]龙文,蔡绍洪,焦建军,伍铁斌.一种改进的灰狼优化算法[J].电子学报,2019,47(01):169-175.
文献复现:改进收敛因子和比例权重的灰狼优化算法(CGWO)
[1]王秋萍,王梦娜,王晓峰.改进收敛因子和比例权重的灰狼优化算法[J].计算机工程与应用,2019,55(21):60-65+98.
文献复现:一种改进非线性收敛方式的灰狼优化算法研究(CGWO)
[1]谈发明,赵俊杰,王琪.一种改进非线性收敛方式的灰狼优化算法研究[J].微电子学与计算机,2019,36(05):89-95.
文献复现:一种基于Tent 映射的混合灰狼优化的改进算法(PSOGWO)
[1]滕志军,吕金玲,郭力文,许媛媛.一种基于Tent映射的混合灰狼优化的改进算法[J].哈尔滨工业大学学报,2018,50(11):40-49.
文献复现:基于差分进化与优胜劣汰策略的灰狼优化算法(IGWO)
[1]朱海波,张勇.基于差分进化与优胜劣汰策略的灰狼优化算法[J].南京理工大学学报,2018,42(06):678-686.
文献复现:基于 Iterative 映射和单纯形法的改进灰狼优化算法(SMIGWO)
[1]王梦娜,王秋萍,王晓峰.基于Iterative映射和单纯形法的改进灰狼优化算法[J].计算机应用,2018,38(S2):16-20+54.
文献复现:一种基于混合策略的灰狼优化算法(EPDGWO)
[1]牛家彬,王辉.一种基于混合策略的灰狼优化算法[J].齐齐哈尔大学学报(自然科学版),2018,34(01):16-19+32.
文献复现:基于随机收敛因子和差分变异的改进灰狼优化算法(IGWO)
[1]徐松金,龙文.基于随机收敛因子和差分变异的改进灰狼优化算法[J].科学技术与工程,2018,18(23):252-256.
文献复现:一种基于差分进化和灰狼算法的混合优化算法(DEGWO)
[1]金星,邵珠超,王盛慧.一种基于差分进化和灰狼算法的混合优化算法[J].科学技术与工程,2017,17(16):266-269.
文献复现:协调探索和开发能力的改进灰狼优化算法(IGWO)
[1]龙文,伍铁斌.协调探索和开发能力的改进灰狼优化算法[J].控制与决策,2017,32(10):1749-1757.
文献复现:基于Cat混沌与高斯变异的改进灰狼优化算法(IGWO)
[1]徐辰华,李成县,喻昕,黄清宝.基于Cat混沌与高斯变异的改进灰狼优化算法[J].计算机工程与应用,2017,53(04):1-9+50.
文献复现:具有自适应搜索策略的灰狼优化算法(SAGWO)
[1]魏政磊,赵辉,韩邦杰,孙楚,李牧东.具有自适应搜索策略的灰狼优化算法[J].计算机科学,2017,44(03):259-263.
文献复现:采用动态权重和概率扰动策略改进的灰狼优化算法(IGWO)
[1]陈闯,Ryad Chellali,邢尹.采用动态权重和概率扰动策略改进的灰狼优化算法[J].计算机应用,2017,37(12):3493-3497+3508.
文献复现:具有自适应调整策略的混沌灰狼优化算法(CLSGWO)
[1]张悦,孙惠香,魏政磊,韩博.具有自适应调整策略的混沌灰狼优化算法[J].计算机科学,2017,44(S2):119-122+159.
文献复现:强化狼群等级制度的灰狼优化算法(GWOSH)
[1]张新明,涂强,康强,程金凤.强化狼群等级制度的灰狼优化算法[J].数据采集与处理,2017,32(05):879-889.
文献复现:一种新型非线性收敛因子的灰狼优化算法(NGWO)
[1]王敏,唐明珠.一种新型非线性收敛因子的灰狼优化算法[J].计算机应用研究,2016,33(12):3648-3653.
文献复现:重选精英个体的非线性收敛灰狼优化算法(EGWO)
[1]黎素涵,叶春明.重选精英个体的非线性收敛灰狼优化算法[J].计算机工程与应用,2021,57(01):62-68.
https://mianbaoduo.com/o/bread/aZ2Wl54=
二、狼群算法和灰狼算法的区别
狼群算法是基于狼群群体智能,模拟狼群捕食行为及其猎物分配方式,以“胜者为王”的头狼产生规则和“强者生存”的狼群更新机制,提出一种新的群体智能算法。而灰狼算法是狼群算法的优化版
三、灰狼算法
灰狼优化算法(GWO)模拟了自然界灰狼的领导和狩猎层级,在狼群中存在四种角色,α alphaα狼负责领导是最具有智慧的在狩猎当中可以敏锐的知道猎物的位置,β betaβ狼可以认为是军师比较具有智慧比较能知道猎物的位置,δ deltaδ狼负责协助前两个层级的狼,最后是ω omegaω狼负责跟从。
在这里插入图片描述
在狩猎(寻优)的过程中,狼群的这三种层级并不是一成不变的,也会根据各个狼的适应度(fitness)进行调整,适应度最强的狼将会成为新的α alphaα狼,其次是β betaβ狼,依次类推。通过很多次的寻找猎物(寻优)中三个层级逐渐趋于稳定,这个时候我们取α alphaα狼
的位置作为猎物(最优解)所处的位置。
注意:注意智能优化算法都是在优化函数光滑性较差,容易落入局部最优时才使用的,不要乱用。智能优化算法的收敛是一种概率意义的收敛,所以得到的解并不一定绝对最优,并且往往收敛较慢。
四、灰狼算法和遗传算法哪个好
灰狼算法好。
灰狼优化算法由Mirjalili等人于2014年提出,主要模仿了自然界中灰狼群体的捕食过程。类似于猩猩、狮子种群内部存在严格的等级制度,灰狼群体内部主要分为4个等级:
α:狼群中的领导者,带领整个狼群进行捕猎活动;
β:负责协助α 并管理δ、ω,即狼群二当家;
δ:只能管理ω,千年老三;
ω:狼群中的老弱病残,只能跟着α、β、δ 混。
b有了这个概念以后,就可以很轻松的与算法结合了。基于最优个体引导机制,在等级制度的基础上,可以很形象的把α、β、δ 分别看作距离目标点最近、次进、次次进的个体,其余个体命名为ω,从而使ω 的位置更新受α、β、δ 引导,完成捕食过程。但要注意的是,若相对低级个体的位置优于相对高级个体,则两者地位互换,实现农奴翻身把歌唱。
以上就是关于灰狼算法为什么编码简单相关问题的回答。希望能帮到你,如有更多相关问题,您也可以联系我们的客服进行咨询,客服也会为您讲解更多精彩的知识和内容。
推荐阅读:
商家用的收款码一体是怎么弄的(商家用的收款码一体是怎么弄的呀)