智能优化算法的主要优点(智能优化算法的优缺点)
大家好!今天让创意岭的小编来大家介绍下关于智能优化算法的主要优点的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。
开始之前先推荐一个非常厉害的Ai人工智能工具,一键生成原创文章、方案、文案、工作计划、工作报告、论文、代码、作文、做题和对话答疑等等
只需要输入关键词,就能返回你想要的内容,越精准,写出的就越详细,有微信小程序端、在线网页版、PC客户端
创意岭作为行业内优秀的企业,服务客户遍布全球各地,如需了解SEO相关业务请拨打电话175-8598-2043,或添加微信:1454722008
本文目录:
一、智能优化算法初始值产生什么
伪随机数。智能优化算法是一种具有全局优化性能强、通用性强、且适用于并行处理的算法,智能优化算法初始值产生伪随机数。初始值指的是最原始的数值,也就是刚开始时的数值。
二、智能优化算法:水循环算法
@[toc]
摘要:水 循 环 算 法 (water cycle alogrithm,WCA)是由Hadi Eskandar 等人受大自然水循环过程中溪流、江河、湖泊流向海洋的过程启发而提出的一种全局优化算法.目前WCA已在工程优化等领域得到应用.
WCA 是一种生物启发的优化算法,它模拟自然界中的水循环过程,在种群中设定 3 类个体:海洋 Sea、河流River 及溪流 Stream. 海洋为当前种群的最优个体,河流为一定数量的仅次于海洋的个体,剩余较差的个体即为溪流.
算法开始之前需要生成大小为 的初始总群体,其中 是种群的总数量, 是设计变量的个数,因此这个随机矩阵为 :
其中, 是海洋 (数量为 1) 及河流 的数量之
和,这是在初始化的时候自行定义的,其余流入海洋和河流的溪流 的数量为 ,其表达式为:
紧接着,根据式(3)计算当前种群中流向海洋的溪流数量及流向对应河流的溪流数量:
完成上述过程后,即可进行汇流过程,汇流过程如图 1所示. 汇流过程中,溪流、河流和海洋的位置根据式(4)随机更新:
其中, 是迭代数; , 的最优值可以选为 2; 是 0 和 1 之间均匀分布的随机数; 及 分别表示第 次及第 次迭代时溪流的位置; 及 分别表示第 次及第 次迭代时河流的位置; 及 分别表示第 次及第 次迭代时海洋的位置. 式(4)中分别为流向河流的溪流、流向海洋的溪流及流向海洋的河流的位置更新公式. 溪流在每次更新过后,计算出相应的适应度值,若该值优于与其相连的河流的适应度值,则将该溪流的位置与该河流的位置进行交换. 河流与海洋、溪流与海洋之间也有类似的交换. 在没有满足设定要求之前,海洋、河流和溪流的位置将根据相应的公式不断地更新.
所有的寻优算法都要考虑收敛过快而陷入局部最优的问题,水循环算法引入蒸发过程来避免该问题的发生. 在水循环过程中,那些流速过慢还有无法达到大海的溪流和河流最终都会蒸发,蒸发过程的出现会引来新的降水. 因此,必须检查河流及溪流是否足够靠近海洋,若距离较远则进行蒸发过程,蒸发过程的判断条件为
其中, 是接近零的小数. 蒸发过程结束后,应用降雨过程并在不同的位置形成新的溪流或河流(类似遗传算法的突变过程). 较大的可 以防止额外搜索,但是会降低在海洋附近区域的搜索强度. 因此, 的值应该自适应地降低:
其中, 为最大迭代数.
循环过程中的蒸发作用对河流和海洋的影响很小,所以在进行降雨过程之后影响的是溪流的位置. 降雨过程后溪流的新位置为 :
其中,L B (lower bound)和 U B (upper bound)分别表示设计变量的下界和上界.
算法步骤:
(1) 初始化算法参数.
(2) 随机生成初始种群,形成初始溪流(雨滴)、河流和海洋.
(3)计算每个雨滴的适应度函数值.
(4) 利用式(3)确定雨滴流向河流和海洋的强度;利用式(4)更新溪流位置;更新河流位置.
(5) 若溪流给出的适应度值比其相连的河流好,则河流和溪流的位置对换;若河流给出的适应度值比其相连的海洋好,则海洋和河流的位置对换。
(6) 判断 是 否满 足 蒸 发 条件.若 满 足 蒸 发 条件,利用式(7)进入降水过程,形成新的降水。
(7) 利用式(6)减小 值;判断算法是否满足终止条件,若满足,则转到 (8);否则,重复执行(3) - (6)
(8) 输出最优解。
[1] Eskandar H, Sadollah A, Bahreininejad A, et al. Water cycle algorithm - A novel metaheuristic optimization method for solving constrained engineering optimization problems[J]. Computers & Structures, 2012, 110: 151-166.
[2] 金爱娟,苏俊豪,李少龙.基于水循环算法的开关磁阻电机性能优化[J/OL].信息与控制:1-12[2020-09-12]. https://doi.org/10.13976/j.cnki.xk.2020.2048 .
https://mianbaoduo.com/o/bread/aJmTkps=
三、智能优化算法分析sa与ma和ta的异同点
在工程实践中,经常会接触到一些比较“新颖”的算法或理论,比如模拟退火,遗传算法,禁忌搜索,神经网络等。这些算法或理论都有一些共同的特性(比如模拟自然过程),通称为“智能算法”。它们在解决一些复杂的工程问题时大有用武之地。
四、算法优化有哪些主要方法和作用
优化算法有很多,关键是针对不同的优化问题,例如可行解变量的取值(连续还是离散)、目标函数和约束条件的复杂程度(线性还是非线性)等,应用不同的算法。
对于连续和线性等较简单的问题,可以选择一些经典算法,如梯度、Hessian
矩阵、拉格朗日乘数、单纯形法、梯度下降法等。
而对于更复杂的问题,则可考虑用一些智能优化算法,如遗传算法和蚁群算法,此外还包括模拟退火、禁忌搜索、粒子群算法等。
以上就是关于智能优化算法的主要优点相关问题的回答。希望能帮到你,如有更多相关问题,您也可以联系我们的客服进行咨询,客服也会为您讲解更多精彩的知识和内容。
推荐阅读: