HOME 首页
SERVICE 服务产品
XINMEITI 新媒体代运营
CASE 服务案例
NEWS 热点资讯
ABOUT 关于我们
CONTACT 联系我们
创意岭
让品牌有温度、有情感
专注品牌策划15年

    rfm模型分别代表

    发布时间:2023-04-08 05:59:17     稿源: 创意岭    阅读: 126        

    大家好!今天让创意岭的小编来大家介绍下关于rfm模型分别代表的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。

    开始之前先推荐一个非常厉害的Ai人工智能工具,一键生成原创文章、方案、文案、工作计划、工作报告、论文、代码、作文、做题和对话答疑等等

    只需要输入关键词,就能返回你想要的内容,越精准,写出的就越详细,有微信小程序端、在线网页版、PC客户端

    官网:https://ai.de1919.com

    创意岭作为行业内优秀的企业,服务客户遍布全球各地,如需了解SEO相关业务请拨打电话175-8598-2043,或添加微信:1454722008

    本文目录:

    rfm模型分别代表

    一、基于RFM分析的客户细分!让市场营销事半功倍!

    市场和运营往往绞尽脑汁 做活动、上新品、蹭热点、做营销,拓渠道,不断开发客户 、 做回访维系客户感情 ,除了少数运气好的之外,大部分效果寥寥,这是为何?这年头做营销这么难吗?

    聪明的营销人员知道“ 了解客户 ”和“ 客户细分 ”的重要性。营销人员不仅要着眼于创造更多的访问量和点击量(无论是邮件还是站点)以提高客户获取,还必须遵循从提高点击率(CTR)转变为提高保留,忠诚度并建立客户关系的新范式。与其将整个客户群作为一个整体进行分析,不如将其划分为同类群体,了解每个群体的特征,并使他们参与相关的活动,而不是仅根据客户年龄或地理位置进行客户细分。而 RFM分析是市场营销人员分析客户行为的最流行、最简单、最有效的客户细分方法之一。

    R(Recency)最近一次消费时间 :表示用户最近一次消费距离现在的时间(或截止到统计周期)。消费时间越近的客户价值越大。1年前消费过的用户肯定没有1周前消费过的用户价值大。

    F(Frequency)消费频率: 消费频率是指用户在统计周期内购买商品的次数,经常购买的用户也就是熟客,价值肯定比偶尔来一次的客户价值大。

    M(Monetary)消费金额: 消费金额是指用户在统计周期内消费的总金额,体现了消费者为企业创利的多少,自然是消费越多的用户价值越大。

    简言之, RFM代表近度,频率和额度 ,每个值都与某些关键客户特征相对应。这些RFM指标是客户行为的重要指标,因为频率和额度会影响客户的生命周期价值,新近度会影响保留率,而保留率是忠诚度的衡量标准。

    如果是缺乏金钱交易方面的业务,例如收视率,读者人数等,可以使用" Engagement  "(参与度)代替Monetary。如官网的访问频次,微信的交互情况,邮件打开率等。这将导致使用RFE 而不是 RFM。此外,可以根据指标例如跳出率,访问时长,访问的页面数,每页所花费的时间等来将Engagement参数定义为一个综合值。

    • 购买的时间越近,顾客对促销的反应越积极

    • 顾客购买的频率越高,他们就越投入和越满意

    • 消费金额区分了大笔支出的消费者和低价值的购买者

    • 想要提高回购率和留存率,需要时刻警惕R值

    RFM分析可帮助营销人员找到以下问题的答案:

    • 谁是您最有价值的客户?

    • 导致客户流失率增多的是哪些客户?

    • 谁有潜力成为有价值的客户?

    • 你的哪些客户可以保留?

    • 您哪些客户最有可能对参与度活动做出响应?

    • 谁是你不需要关注的无价值客户?

    • 针对哪些客户制定哪种发展、保留、挽回策略?

    通过RFM分析,可以帮助营销人员实现客户细分;衡量客户价值和客户利润创收能力;识别优质客户;指定个性化的沟通和营销服务;为更多的营销决策提供有力支持。

    那RFM分析应如何开始呢?

    由于R值、F值、M值存在量级之间的差距,无法直观的通过加减或平均来衡量用户价值,这里我们介绍一种评分方式,根据三组数据各个值的特性,采用5分制为各个数据赋予一个评分值。

    让我们通过一个客户交易的样本数据集来演示一个简单的RFM分析是如何工作的:

    为了对此示例进行RFM分析,让我们看看如何根据每个RFM属性分别对客户进行排名,然后对这些客户进行评分。假设我们使用RFM值从1到5对这些客户进行排序,R值的评分机制是R值越大,评分越小。

    如上表所示,我们按“Recency”对客户进行了排序,最新的购买者排在首位。由于为客户分配的分数是1-5,因此前20%的客户(客户ID为12、11、1)的“Recency”分数为5,接下来的20%(客户ID为15、2、7)的分数为4 , 以此类推。

    同样,我们可以根据客户购买从高到低的“Frequency”对其进行排序,将前20%的“Frequency”得分分配为5,依此类推。对于“Monetary”因素,对前20%的客户(消费最多的)分配5分,最低的20%得分为1。这些F和M得分总结如下:

    RFM得分

    最后,我们可以将这些客户的R、F和M排名结合起来得到一个汇总的RFM得分。 下表中显示的该RFM得分是各个R,F和M得分的平均值,是通过对每个RFM属性赋予相等的权重来获得的。

    这种简单的将客户从1-5排序的方法最多会产生125个不同的RFM单元(5x5x5),范围从111(最低)到555(最高)。每个RFM单元的大小不同,依据客户的关键习惯,被捕获为RFM得分以得出客户细分,营销人员依据不同得分的客户制定相应的策略。

    显然,针对不同行业的企业如果仅根据他们的购买或参与行为将每个客户的R,F和M得分平均以获得RFM细分市场并不公平。这类平均值只适合于均类数据,对于一些不规则数据,平均值会造成很大的误差, 因此,根据您的业务性质,您可以科学增加或减少每个RFM变量的相对重要性,以得出最终分数。例如:

    1 .耐用消费品行业

    每笔交易的Monetary通常较高,但Frequency和Recency较低。例如,你不能指望客户每月购买一台冰箱或空调。在这种情况下,市场营销人员应该更重视Monetary和Recency方面,而不是Frequency方面。

    2 .时装/化妆品等零售业务

    每月搜索和购买产品的客户将有更高的Recency和Frequency得分而不是Monetary得分。因此,可以通过给R和F得分赋予比M更大的权重来计算RFM得分。

    3 .视频平台等内容apps

    追剧狂人相比一般消费者拥有更长的观看时长。对于这些狂热者,“参与度”和Frequency可以比Recency给予更多的重视,而对于一般人群,可以对Recency和Frequency给予比Engagement更高的权重,以得出RFE得分。

    此外,企业需要针对自己的行业特点灵活变通指标的采用。比如在金融行业,最近一次购买时间可能并不适用,此时可以考虑采用金融产品持有时间来代替R,这样更能体现用户与金融企业建立联系时间的长短。

    还有一个问题是:如果每个RFM单元都被视为一个细分,那么营销人员将无法单独分析所有这125个客户细分市场。因此,通常采用的RFM模型是将这三个维度指标划分到三维正方体中。

    在以上的RFM评分示例中,我们已经分别计算R、F、M评分;现在我们进一步分别获得R、F、M的平均值;然后将各个变量高于平均分的定义为“高”,低于平均分的定义为“低”;根据三个变量“高”“低”的组合来定义客户类型;如“高”“高”“高”为高价值客户。

    通常,我们通过三维正方体来可视化RFM分析结果。这使用户可以更轻松地理解得分,以提供更易于管理和直观的细分。

    如上面的RFM模型所示,因为有三个变量,所以要使用三维坐标系进行展示,X轴表示Recency,Y 轴表示Frequency,Z轴表示Monetary,坐标系的8个象限分别表示8类用户。

    现在,让我们讨论如何解释RFM细分,以了解这些用户的行为,并提出一些有效的营销策略。

    •  重要价值客户 是您的最佳客户,他们是那些最新购买,最常购买,并且花费最多的消费者。提供VIP服务和个性化服务,奖励这些客户,他们可以成为新产品的早期采用者,并有助于提升您的品牌。

    •  重要发展客户 是您的近期客户,消费金额高,但平均频率不太高,忠诚度不高。提供会员或忠诚度计划或推荐相关产品以实现向上销售并帮助他们成为您的忠实拥护者和高价值客户。

    •  重要保持客户 是指那些经常购买、花费巨大,但最近没有购买的客户。向他们发送个性化的重新激活活动以重新连接,并提供续订和有用的产品以鼓励再次购买。

    •  重要挽回客户 是那些曾经光顾,消费金额大,购买频率低,但最近没有光顾的顾客。设计召回策略,通过相关的促销活动或续订带回他们,并进行调查以找出问题所在,避免将其输给竞争对手。

    • 一般价值客户 是那些最近购买,消费频次高但消费金额低的客户,需要努力提高其客单价,提供产品优惠以吸引他们。

    •  一般发展客户 是那些最近购买,但消费金额和频次都不高的客户。可提供免费试用以提高客户兴趣,提高其对品牌的满意度。

    •  一般保持客户 是指很久未购买,消费频次虽高但金额不高的客户。可以提供积分制,各种优惠和打折服务,改变宣传方向和策略与他们重新联系,而采用公平对待方式是最佳。

    •  一般挽留客户 是指RFM值都很低的客户。针对这类客户可以对其减少营销和服务预算或直接放弃。

    此外:

    • 目前的RFM分析中,一般给与M值更高的权重;

    • 如果您的公司中一般挽留客户与一般发展客户占据多数,说明公司的用户结构不是很合理,需要尽快采取措施进行优化。

    RFM是一种数据驱动的客户细分技术,可帮助营销人员做出更明智的战略性决策。使营销人员能够快速识别用户并将其细分为同类群体,并针对他们制定差异化和个性化的营销策略。这反过来又提高了用户的参与度和留存率。

    通常,数据分析师会借助CRM系统或者BI工具来实现RFM分析。

    如需了解更多,欢迎访问怡海软件官网 https://www.frensworkz.com/

    二、RFM模型如何实际应用?

    这是一个人人都可以上手的模型,不管你是运营、销售、财务、市场等等,RFM模型是一个很通用,又有一套科学理论的商业模型。这是一篇我花了五小时的教程(真的是写到崩溃,幸好我熬下来了,给大家分享实实在在可上手的干货)数据源准备只需四个字段:客户名称、交易日期、交易次数/频率、交易金额。如果你手头刚好有这样的数据源不妨试试做这个模型吧。下面三页是介绍什么是RFM,后面是全部的实操教程,Tableau和Excel通用操作,我保证你看了能立马上手。如何通过订单数据,分析用户的基本属性用户的订单上都有订餐地址,通过对于订餐地址的统计,我们可以查询到不同条件组合下的用户分布,甚至能知道喜欢谋道菜的用户都在哪里。举个简单的例子,下图表示的是普通可乐和健怡可乐的用户分布,类似的用户数据挖掘,还可以根据复购构成、复购用户跨平台使用情况、性别组成做更精细化的分析。值得注意的是,数据平台间的差异还是蛮大的,除了跨平台分析也需要分平台对比,有利于针对不同平台做出不同的营销策略。上面这些最基本的用户属性对于精细化运营还是不够的。因为这些信息无法帮助你解决下面四个问题——

    1.谁是我的重要价值客户,他们都有什么特点。

    2.谁是我需要重点保持联系的客户,他们都有什么特点。

    3.谁是我的重要发展客户,他们都有什么特点。

    4.谁是我的重要挽留客户,他们都有什么特点。想要解答这个问题,我们需要动用更高阶的分析模型,去挖掘有效信息。如何通过RFM模型,为用户分群,实现精细化运营RFM模型是一个被广泛使用的客户关系分析模型,主要以用户行为来区分客户,RFM分别是:R = Recency最近一次消费F = Frequency 消费频率M = Monetary 消费金额需要详细了解以上三个指标定义的,可以去戳度娘,教科书式的RFM区分,会将维度再细分出5份,这样就能够细分出5x5x5=125类用户,再根据每类用户精准营销。

    rfm模型分别代表

    三、如何分析RFM模型才能最有效,才能真正起到精细化运营的作用?

    举一个互联网餐饮的例子~来证明如何分析RFM模型:

    如何通过外卖订单数据,分析用户的基本属性;

    用户的订单上都有订餐地址,通过对于订餐地址的统计,我们可以查询到不同条件组合下的用户分布,甚至能知道喜欢某道菜的用户都在哪里。类似的用户数据挖掘,还可以根据复购构成、复购用户跨平台使用情况、性别组成做更精细化的分析。值得注意的是,数据平台间的差异还是蛮大的,有利于针对不同平台做出不同的营销策略。

    上面这些最基本的用户属性对于精细化运营还是不够的。 因为这些信息无法帮助你解决下面四个问题——

    1.谁是我的重要价值客户,他们都有什么特点?

    2.谁是我需要重点保持联系的客户,他们都有什么特点?

    3.谁是我的重要发展客户,他们都有什么特点?

    4.谁是我的重要挽留客户,他们都有什么特点?

    2.如何通过RFM模型,为用户分群,实现精细化运营

     RFM模型是一个被广泛使用的客户关系分析模型,主要以用户行为来区分客户,RFM分别是:

    R = Recency 最近一次消费

    F = Frequency 消费频率

    M = Monetary 消费金额

    需要详细了解以上三个指标定义的,百度会将维度再细分出5份,这样就能够细分出5x5x5=125类用户,再根据每类用户精准营销……显然125类用户已超出普通人脑的计算范畴了,更别说针对125类用户量体定制营销策略。实际运用上,我们只需要把每个唯独做一次两分即可,这样在3个维度上我们依然得到了8组用户。

    重要价值客户(111):最近消费时间近、消费频次和消费金额都很高,必须是VIP啊!

    重要保持客户(011):最近消费时间较远,但消费频次和金额都很高,说明这是个一段时间没来的忠实客户,我们需要主动和他保持联系。

    重要发展客户(101):最近消费时间较近、消费金额高,但频次不高,忠诚度不高,很有潜力的用户,必须重点发展。

    重要挽留客户(001):最近消费时间较远、消费频次不高,但消费金额高的用户,可能是将要流失或者已经要流失的用户,应当基于挽留措施。

    rfm模型分别代表

    3.如何在BDP个人版上建立RFM模型,帮助用户分群

    这时候可能会有朋友问了,天啦,你这个三维模型,我没办法用BDP来建表格了。所以我们需要做的是将三维模型二维化,我们将R域切一块出来(即在近30天有复购的用户中做分析),压扁了就会看到。

    上方的表示或许还是太学术了,简单的说

    第一步:先挑出来近1个月的复购用户。

    第二步:近1个月内复购用户的平均实付金额做纵轴。

    第三步:近1个月内复购用户的购买次做横轴,生成表格。

    第四步,你需要自己在这个表格上划红线。

    rfm模型分别代表

    横着的红线,代表着你认为来吃饭的客人平均每餐该花多少钱,我这里设定的值是25元,叫外卖25都没付到,对我而言是低消费金额(低M)用户。

    竖着的红线,代表着你认为复购多少次的客人,是你的高频用户。外卖点餐流动率很大,一个用户每个月能在一家店点三次以上的菜,对我而言即是高频。

    这样,BDP个人版上的RFM模型就建立好了。这个RFM模型在实操时有什么用呢?举个例子

    比如对圈用户群发短信转化只有不到1%时,你可以用RFM做个分析,只选取R值高的用户(最近2周到最近一个月内消费的用户),转化率可以由1%提升到10%。

    这也意味着,以往6元/订单将下降到0.6元/订单。掌柜们是愿意花600元给10000个用户发短信,得到100个订单,还是愿意花48元给800人发短信得到80个订单,相信大家一定会选后者。

    而整体的RFM区分,则能够帮掌柜们针对不同的用户发不同的短信,短信的开头是用“好久不见”、还是用“恭喜你成为VIP”,就得看时重要保持客户还是重要价值用户了。只有能区分用户,才能走向精细化运营。

    四、rfm模型在客户细分中有什么作用

    RFM模型。

    即:

    最近一次消费(Recency)

    消费频率(Frequency)

    消费金额(Monetary)

    在众多的客户关系管理(CRM)的分析模式中,RFM模型是衡量客户价值和客户创利能力的重要工具和手段。该机械模型通过一个客户的近期购买行为、购买的总体频率以及花了多少钱三项指标来描述该客户的价值状况。

    以上就是关于rfm模型分别代表相关问题的回答。希望能帮到你,如有更多相关问题,您也可以联系我们的客服进行咨询,客服也会为您讲解更多精彩的知识和内容。


    推荐阅读:

    aso和rf偏高(rf和aso都高)

    商家可以订阅rfq关键词吗

    papereasy免费查重入口(paperfree免费查重入口官网)

    高端就业安置有成功的吗(高端就业安置可靠吗)

    全球最好的景观设计专业