APD的工作原理(简述apd的工作原理)
大家好!今天让创意岭的小编来大家介绍下关于APD的工作原理的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。
开始之前先推荐一个非常厉害的Ai人工智能工具,一键生成原创文章、方案、文案、工作计划、工作报告、论文、代码、作文、做题和对话答疑等等
只需要输入关键词,就能返回你想要的内容,越精准,写出的就越详细,有微信小程序端、在线网页版、PC客户端
创意岭作为行业内优秀的企业,服务客户遍布全球各地,如需了解SEO相关业务请拨打电话175-8598-2043,或添加微信:1454722008
本文目录:
一、三极管工作原理,最好用形象的语言表达或者画出原理图说明
光电三极管也称光敏三极管,它的电流受外部光照控制。是一种半导体光电器件。比光电二极管灵敏得多,光照集中电结附近区域。
利用雪崩倍增效应可获得具有内增益的半导体光电二极管(APD),而采用一般晶体管放大原理,可得到另一种具有电流内增益的光伏探测器,即光电三极管。它的普通双极晶体管十分相似,都是由两个十分靠近的p-n结-------发射结和集电结构成,并均具有电流发大作用。为了充分吸收光子,光电三极管则需要一个较大的受光面,所以,它的响应频率远低于光电二极管。[1]
2.1机构与工作原理
光电三极管是一种相当于在基极和集电极之间接有光电二极管的普通三极管,因此,结构与一般晶体管类似,但也有其特殊地方。如图2.1.1所示。图中e.b.c分别表示光电三极管的发射极.基极和集电极。正常工作时保证基极--集电极结(b—c结)为反偏正状态,并作为受光结(即基区为光照区)。光电三极管通常有npn和pnp型两种结构。常用的材料有硅和锗。例如用硅材料制作的npn结构有3DU型,pnp型有3GU型。采用硅的npn型光电三极管其暗电流比锗光电三极管小,且受温度变化影响小,所以得到了广泛应用。[2]
光电三极管的工作有两个过程,一是光电转换;二是光电流放大。光电转换过程是在集---基结内进行,它与一般光电二极管相同。[3]当集电极加上相对于发射极为正向电压而基极开路时(见图2.1.1(b)),则b--c结处于反向偏压状态。无光照时,由于热激发而产生的少数载流子,电子从基极进入集电极,空穴则从集电极移向基极,在外电路中有电流(即暗电流)流过。当光照射基区时,在该区产生电子---空穴对,光生电子在内电场作用下漂移到集电极,形成光电流,这一过程类似于光电二极管。于此同时,空穴则留在基区,使基极的电位升高,发射极便有大量电子经基极流向集电极,总的集电极电流为
IC=IP +βI P=(1+β)IP 2.1.1
图2.1.1光电三极管结构及工作原理
式中β为共发射极电流放大倍数。因此,光电三极管等效于一个光电二极管与一般晶体管基极---集电极结的并联。它是把基极---集电极光电二极管的电流(光电流IP)放大β倍的光伏探测器,可用图2.1.1(c)来表示。与一般晶体管不同的是集电极电流IC由基极---集电极结上产生的光电流IP=Ib控制。也就是说,集电结起双重作用,一是把光信号变成电信号起光电二极管的作用;二是将光电流放大,起一般晶体三极管的集电极的作用。[4]
2.2光电三极管的等效电路
根据光电三极管的工作原理,我们可以比较容易的画出他的等效电路。由于它的集电结势垒电容Ccb远小于发射结势垒电容Cbe,我们可以得到如图2.2.1光电三极管的交流等效电路,图中ip为集电结光电二极管的电流源,Cbe为发射结电容;rbe为发射结正向微分交流电阻;iLw为放大后的电流源;iL=βip;β为光电三极管的放大倍数;Rce为集电极发射极电阻;Cce为集电极发射极间电容;RL为负载电阻。由图5--40等效电路,
可以得到负载电阻两端的输出电压V0为
2.2.1
式中, , 为入射光信号的角频率,选择合适的负载,使得 ,则 ,输出电压为
2.2.2
由上式可看出,当输入光信号时,由于发射结电容相对较大,造成对信号的分流,将使有效输出信号减小。此外,电容 的旁路也会减少流过 的输出电流。利用光电三极管的等效电路在计算机和分析它的时间响应和输出外特性是非常方便的。[5]
2.3光电三极管的特性参数
2.3.1伏安特性
图2.3.1表示光电三极管的 关系曲线。由图可见,光电三极管在偏压为零时,集电流为零。当有光照时,光电三极管输出电流比同样光照下光电二极管的输出电流大 倍。图中曲线还表明,在光功率等间距增大的情况下,输出电流并不等间距增大,这是由于电流放大倍数 随信号光电流的增大而增大所引起的。
2.3.2频率响应
光电三极管的频率响应与 结的结构及外电路有关。通常需考虑:少数载流子对发射结和收集结势垒电容( 和 )的充放电时间;少数载流子渡越基区所需时间;少数载流子扫过收集势垒区的渡越时间;通过收集结到达收集区的电流流经收集区及外负载电阻产生的结压将,使收集结电荷量改变的时间常数。于是光电三极管总响应时间应为上述各个时间之和。因此,光电三极管的响应时间比光电二极管的要长的多。由于光电三极管广泛应用于各种光电控制系统,其输入光信号多为脉冲信号,即工作在大信号或开关状态,因而光电三极管的响应时间或响应频率将是光电三极管的重要参数。[6]
为改善光电三极管的响应频率,从光电三极管的等效电路可知道应尽可能减少 和 时间常数。一方面在工艺上设法减小结电容 . 等;另一方面要合理选择负载电阻 ,减小电路时间常数。图2.3.2给出了在不同负载电阻 下,光电三极管输出电压的相对值与入射光调制频率的关系。由图可知, 愈大,高频响应将愈差。减小 可以改善频率特性。但 降低会导致输出电压下降。因此,在实际使用时,合理选择 和利用高增益运算放大器作后级电压放大,可得到高的输出电压并改善频率响应。此外,为改善频率响应,减小体积,提高增益,电路上常采用高增益.低输入阻抗的运算放大器与之配合。图2.3.3(a)(b)分别表示达林顿光电晶体管的集成电路示意图。实际使用光电三极管时常采用带基极引线的光电三极管,并提供一定的基极电流。对无基极引线的光电三极管,则给予一定照度的背景光,使其工作于线性放大区,以得到较大的集电极电流,这将有利于提高光电三极管的频率响应。图2.3.4给出了光电三极管响应时间与集电极电流 的关系,由图可知,增加集电极电流 可减小光电三极管的响应时间,即提高光电三极管的工作频率。[7]
与光电二极管相比较,光电三极管频率响应较低,不宜使用于高速,宽带的光电探测系统中,但由于其响应率高,具有电流内增益,故在一般光电探测系统中仍得到广泛应用。
设计一个报警器。由图3.1(a)、(b)所示电路分别是红外发射器和红外接收、无线发射机的电路图。
图3.1(a)所示电路为红外发射器电路。由VT1、VT2、C1以及R1等组成一个300Hz左右的自激振荡器,其振荡器频率主要由时间常数R1 C1决定。红外发射二极管串接在VT2的集电极回路中,在振荡器振荡过程中VT2每导通一次,发光二极管发光一次。R3用于限流,使VT2的电流不超过500mA。
(a) 红外发射器
(b)红外接受无线发射机
图3.1 遮光式红外监控无线报警器电路
在图3.1(b)所示电路中,红外就收管VD3选用选用与发射管配套的管型(光波长一致)。VD3将照射的红外光转换成电信号,并经C2、R5加至IC1-a的反相输入端。IC1采用双运放TL072(或LM358、R4558、NE5532),其同相端外接6V骗子电压。该级的放大倍数K=20lg(R8/R5),图示参数给出近53dB的放大量。IC1-a的输出经VD4、C3等整流后,以直接电压形式加至IC1-b的反相输入端。IC1-b与R10、R12、RP1等组成一个电压比较器,当VD3一直受红外光照时,b点的电位Vb<Va(预先调好),IC1-b的输出端(⑦脚)呈高电平,VT3饱和导通,致使其集电极,(即IC2的④脚)呈低电平(<0.4V)。IC2与R15、R16、C4等组成一个可控多谐振荡级,当它的强制复位④脚呈低电平时,电路被强制复位,振荡中止。
当有人涉足红外监控区时,红外光束被遮断,IC1-a无信号输入,其输出呈低电平,则电源电压通过R9对C3充电,致使Vb>Va, IC1-b的⑦脚呈低电平,VT3截止,则IC2的④脚通过R14接电源,呈高电位,IC2起振。其振荡频率f=1.44/[( R15+2 R16)C4],图示参数的振荡频率约为1000Hz。
IC2输出的音频脉冲信号通过R17、C6加至VT4的基极。VT4与L、C9、C10等组成一个高频振荡器,其振荡频率主要取决于L、C9组成的选频回路,调节C9,使振荡频率在调频波段88-108MHz范围内。同时,该振荡级在输入脉冲信号的激励下呈调频振荡状态,这是由于VT4的集电结电容随调制脉冲的高低电平变化,进而实现调频。调频载波信号通过天线发射出去。
二、药学apd和erp各表示什么
APD是动作电位时程。指可兴奋组织或细胞受到阈上刺激时,在静息电位基础上发生的快速、可逆转、可传播的细胞膜两侧的电变化。
ERP是事件相关电位。是一种特殊的脑诱发电位,通过有意地赋予刺激以特殊的心理意义,利用多个或多样的刺激所引起的脑的电位。它反映了认知过程中大脑的神经点生理的变化。
药学
1专业介绍
药学专业培养具备药学学科基本理论、基本知识和实验技能,能在药品生产、检验、流通、使用和研究与开发领域从事鉴定、药物设计、一般药物制剂及临床合理用药等方面工作的高级科学技术人才。 业务培养要求:本专业学生主要学习药学各主要分支学科的基本理论和基本知识,受到药学实验方法和技能的基本训练,具有药物制备、质量控制评价及指导合理用药的基本能力。
2实践教学
有机化学基础、分析化学基础、物理化学基础、生物化学基础、药物化学基础、药剂学、药物分析、药理学基础、药事管理、临床医学概论、医院药房见习、制剂室见习、药厂见习、药检所见习、生产实习等,以及各校的主要特色课程和实践环节。
3培养目标
培养掌握药学的基本理论和专业技能,从事药品生产、检验、一般药物制剂和临床合理用药的高级技术应用性专门人才。
4培养要求
本专业学生主要学习药学各主要分支学科的基本理论和基本知识,受到药学实验方法和技能的基本训练,具有药物制备、质量控制评价及指导合理用药的基本能力。
5专业能力
1.掌握药剂学、药理学、药物化学和药物分析等学科的基本理论、基本知识;
2.掌握主要药物制备、质量控制、药物与生物体相互作用、药效学和药物安全性评价等基本方法和技术;
3.具有药物制剂的初步设计能力、选择药物分析方法的能力、新药药理实验与评价的能力、参与临床合理用药的能力;
4.熟悉药事管理的法规、政策与营销的基本知识;
5.了解现代药学的发展动态;
6.掌握文献检索、资料查询的基本方法,具有一定的科学研究和实际工作能力。
三、流式细胞仪荧光检测pmt接收器和apd接收器的区别
这两个是在结构和机理上完全不同的装置,不过目的都是一样的,都是把光信号转变为电信号。
PMT是photomultiplier tubes 的缩写,字面意思就是光电倍增管。光子从PMT的一端进入,PMT内部的阴极端把光子转化为电子,通过逐级扩增的方式,把信号放大。然后转给信号转换器,转为数字信号,再输送到电脑。
APD是avalanche photodiode的缩写,这个装置采用的是“雪崩扩增”模式来放大信号。
两者各有优缺点。PMT的敏感性比较好,所以主流流式细胞仪的荧光检测探头一般都采用PMT。不过成本比较高。而APD的造价低廉,体积小。所以一般用在FSC的探头。
四、3. 分析比较以下几种光电检测器件的异同:硅光电池,光电二极管(PIN),雪崩光电二极管(APD)。主要从以
简单说,都可以产生光生电流,把光变成电。
硅光电池:主要是能量转化,一般工作于可见光波段,把光能转化为电能,单晶硅18%左右,
多晶硅16%左右,一般不会考虑信噪比;
PIN: 用于光至电信号转换,通讯中常用,主要的有工作于850nm波段和1100nm-1650nm波段的,
转化效率一般在0.85A/W左右,信噪比可以做到很高,这个过程中的噪声主要是热噪声;
APD:和PIN相比,多了一个雪崩增益区,可以发大光生电流,从而提高转化效率,但是雪崩增益
本身也会产生噪声。
以上就是关于APD的工作原理相关问题的回答。希望能帮到你,如有更多相关问题,您也可以联系我们的客服进行咨询,客服也会为您讲解更多精彩的知识和内容。
推荐阅读: