HOME 首页
SERVICE 服务产品
XINMEITI 新媒体代运营
CASE 服务案例
NEWS 热点资讯
ABOUT 关于我们
CONTACT 联系我们
创意岭
让品牌有温度、有情感
专注品牌策划15年

    半导体SEM设备(semi半导体)

    发布时间:2023-04-08 02:25:52     稿源: 创意岭    阅读: 70        

    大家好!今天让创意岭的小编来大家介绍下关于半导体SEM设备的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。

    开始之前先推荐一个非常厉害的Ai人工智能工具,一键生成原创文章、方案、文案、工作计划、工作报告、论文、代码、作文、做题和对话答疑等等

    只需要输入关键词,就能返回你想要的内容,越精准,写出的就越详细,有微信小程序端、在线网页版、PC客户端

    官网:https://ai.de1919.com

    创意岭作为行业内优秀的企业,服务客户遍布全球各地,如需了解SEO相关业务请拨打电话175-8598-2043,或添加微信:1454722008

    本文目录:

    半导体SEM设备(semi半导体)

    一、SEM与TEM带的EDAX的分辨率是多少

    1.做TEM测试时样品的厚度最厚是多少 ?

    TEM的样品厚度最好小于100nm,太厚了电子束不易透过,分析效果不好。

    2.请问样品的的穿晶断裂和沿晶断裂在SEM图片上有各有什么明显的特征?

    在SEM图片中,沿晶断裂可以清楚地看到裂纹是沿着晶界展开,且晶粒晶界明显;穿晶断裂则是裂纹在晶粒中展开,晶粒晶界都较模糊。

    3.做TEM测试时样品有什么要求?

    很简单,只要不含水分就行。如果样品为溶液,则样品需要滴在一定的基板上(如玻璃),然后干燥,再喷碳就可以了。如果样品本身导电就无需喷碳。

    4.水溶液中的纳米粒子如何做TEM?

    透射电镜样品必须在高真空中下检测,水溶液中的纳米粒子不能直接测。一般用一个微栅或铜网,把样品捞起来,然后放在样品预抽器中,烘干即可放入电镜里面测试。如果样品的尺寸很小,只有几个纳米,选用无孔的碳膜来捞样品即可。

    5.粉末状样品怎么做TEM?

    扫描电镜测试中粉末样品的制备多采用双面胶干法制样,和选用合适的溶液超声波湿法制样。分散剂在扫描电镜的样品制备中效果并不明显,有时会带来相反的作用,如干燥时析晶等。

    6.EDS与XPS测试时采样深度的差别?

    XPS采样深度为2-5nm,我想知道EDS采样深度大约1um.

    7.能谱,有的叫EDS,也有的叫EDX,到底哪个更合适一些?

    能谱的全称是:Energy-dispersiveX-ray spectroscopy

    国际标准化术语:

    EDS-能谱仪

    EDX-能谱学

    8.TEM用铜网的孔洞尺寸多大?

    捞粉体常用的有碳支持膜和小孔微栅,小孔微栅上其实也有一层超薄的碳膜。拍高分辨的,试样的厚度最好要控制在 20 nm以下,所以一般直径小于20nm的粉体才直接捞,颗粒再大的话最好是包埋后离子减薄。

    9.在透射电镜上观察到纳米晶,在纳米晶的周围有非晶态的区域,我想对非晶态的区域升温或者给予一定的电压(电流),使其发生变化, 原位观察起变化情况?

    用原子力显微镜应该可以解决这个问题。

    10.Mg-Al合金怎么做SEM,二次电子的?

    这种样品的正确测法应该是先抛光,再腐蚀。若有蒸发现象,可以在样品表面渡上一层金。

    11.陶瓷的TEM试样要怎么制作?

    切片、打磨、离子减薄、FIB(强烈推荐)

    12.透射电子显微镜在高分子材料研究中的应用方面的资料?

    殷敬华 莫志深 主编 《现代高分子物理学》(下册) 北京:科学出版社,2001[第十八章 电子显微镜在聚合物结构研究中的应用]

    13.透射电镜中的微衍射和选区衍射有何区别?

    区别就是电子束斑的大小。选区衍射束斑大约有50微米以上,束斑是微米级就是微衍射。微衍射主要用于鉴定一些小的相

    14.SEM如何看氧化层的厚度?通过扫描电镜看试样氧化层的厚度,直接掰开看断面,这样准确吗?

    通过扫描电镜看试样氧化层的厚度,如果是玻璃或陶瓷这样直接掰开看断面是可以的;如果是金属材料可能在切割时,样品结构发生变化就不行了,所以要看是什么材料的氧化层。

    15.TEM对微晶玻璃的制样要求

    先磨薄片厚度小于500um,再到中心透射电镜制样室进行钉薄,然后离子减薄。

    16.电子能量损失谱由哪几部分组成?

    EELS和HREELS是不同的系统。前者一般配合高分辨透射电镜使用,而且最好是场发射枪和能量过滤器。一般分辨率能达到0.1eV-1eV,主要用于得到元素的含量,尤其是轻元素的含量。而且能够轻易得到相应样品区域的厚度。而HREELS是一种高真空的单独设备,可以研究气体分子在固体表面的吸附和解离状态。

    17.研究表面活性剂形成的囊泡,很多文献都用cryoTEM做,形态的确很清晰,但所里只能作负染,能很好的看出囊泡的壁吗?

    高分子样品在电子束下结构容易破坏,用冷冻台是最好的方式。做负染是可以看到壁的轮廓,但是如果要细致观察,没有冷冻台大概不行吧?我看过的高分子样品都是看看轮廓就已经很满意了,从来没有提到过更高要求的。

    18.hkl、hkl指的是什么?

    (hkl)表示晶面指数 {hkl} 表示晶面族指数

    [hkl] 表示晶向指数 表示晶向族指数

    (h,k,-h-k,l)六方晶系的坐标表示法林海无边

    19.电镜测试中调高放大倍数后,光斑亮度及大小会怎样变化?

    变暗,因为物镜强了,焦距小了,所以一部分电流被遮挡住了,而亮度是和电流成正比的。由于总光束的强度是一定的,取放大倍率偏大则通过透镜的电子束少,反则电子束大。调节brightness就是把有限的光聚在一起,

    20.氧化铝TEM选取什么模式?

    氧化铝最好用lowdose模式,这样才会尽量不破坏晶体结构,

    21.ZSM-5的TEM如何制样?

    在玛瑙研钵中加上酒精研磨,在超声波中分散,滴到微栅上就可以了。辐照的敏感程度与SiAl比有关,SiAl比越大越稳定。

    22.对于衍射强度比较弱,寿命比较短的高分子样品,曝光时间是长一些还是短一些?

    因为衍射比较弱,虽然长时间曝光是增加衬度的一种方法,但是透射斑的加强幅度更大,反而容易遮掩了本来就弱的多得点,而且样品容易损坏,还是短时间比较合适。我曾经拍介孔分子筛的衍射,比较弱,放6-8s,效果比长时间的好。

    23.请教EDXS的纵坐标怎么书写?

    做了EDXS谱,发现各种刊物上的图谱中,纵坐标不一致。可能是因为绝对强度值并不太重要,所以x射线能谱图纵坐标的标注并没有一个统一的标准。除了有I/CPS、CPS、Counts等书写方法外,还有不标的,还有标成Intensity或Relative Intensity的,等等。具体标成什么形式,要看你所投杂志的要求。一般标成CPS的比较多,它表示counts per second,即能谱仪计数器的每秒计数。

    24.EDAX和ED 相同吗?

    EDAX有两个意思,一指X射线能量色散分析法,也称EDS法或EDX法,少用ED表示;二是指最早生产波谱仪的公司---美国EDAX公司。当然生产能谱仪的不只EDAX公司,还有英国的Oxford等。

    EDAX指的是扫描电子显微镜(SEM)或透射电子显微镜(TEM)上用的一种附属分析设备---能谱仪,或指的是最早生产能谱仪的公司---美国伊达克斯有限公司,或这种分析技术。当我们在电镜上观察电子显微图像的同时,可以用这种附属设备分析显微图像上的一个点,或一个线或一个面上各个点所发射的X射线的能量和强度,以确定显微图像上我们感兴趣的哪些点的元素信息(种类和含量)。

    25.二次衍射

    由于电子在物质内发生多次散射,在一次散射不应当出现的的地方常常出现发射,这种现象称为二次衍射。在确定晶体对称性引起的小光反射指数的规律性时,必须注意这种二次衍射现象。二次衍射点是一次衍射的衍射波再次发生衍射的结果。二次衍射点可以出现在运动学近似的两个衍射点的倒易矢量之和所在的位置。特别是,在通过原点的轴上二次衍射点出现的可能性很大。另外也要充分注意 其强度也变强。

    26.什么是超晶格?

    1970年美国IBM实验室的江崎和朱兆祥提出了超晶格的概念.他们设想如果用两种晶格匹配很好的半导体材料交替地生长周期性结构,每层材料的厚度在100nm以下,如图所示,则电子沿生长方向的运动将会产生振荡,可用于制造微波器件.他们的这个设想两年以后在一种分子束外延设备上得以实现.可见,超晶格材料是两种不同组元以几个纳米到几十个纳米的薄层交替生长并保持严格周期性的多层膜,事实上就是特定形式的层状精细复合材料。

    27.明场像的晶格中白点是金属原子吗?

    由于受电子束相干性、透镜的各种像差、离焦量以及样品厚度等因素的影响得到的高分辨像一般不能直接解释,必须进行图像模拟,所以图中白点是不是金属原子不好说,要算一下才知道。

    28.碳管如何分散做TEM?

    看碳管最好用微栅,由于碳膜与碳管反差太弱,用碳膜观察会很吃力。尤其是单壁管。另外注意不要将碳膜伸进去捞,(这样会两面沾上样品,聚不好焦)样品可以滴、涂、抹、沾在有碳膜的面上,表面张力过大容易使碳膜撑破。

    29.不同极靴的分辨率

    极靴分为:超高分辨极靴、高分辨极靴、高倾斜极靴。超高分辨极靴点分辨率在0.19nm,高分辨极靴点分辨在0.24nm,但是实际情况是达不到的。场发射与LaB6的分辨率是一样的,就是速流更加稳定,亮度高是LaB6亮度的100倍。

    30.如果机器放电了——电子枪内充足氟里昂到规定指标。

    在电压正常,灯丝电流也正常的情况下,把所有的光阑都撤出,但是还是看不到光线——电子枪阀未打开。

    撤出所有光阑,有光束,但是有一半被遮挡住,不知是什么原因——shut 阀挡着部分光线。

    31.标尺大小怎么写?

    标尺只能用1、2、5这几个数比如1、2、5、10、20、50、100、200、500,没有用其他的。

    32.TEM和STEM图像的差别?

    TEM成像:照明平行束、成像相干性、结果同时性、衬度随样品厚度和欠焦量发生反转。由于所收集到散射界面上更多的透过电子,像的衬度更好!

    STEM成像:照明会聚束、成像非相干、结果累加性,在完全非相干接收情况下像的衬度不随样品厚度和欠焦量反转,可对更厚一点的样品成像。

    33.纳米环样品品(nanorings)怎么制样?

    土办法,把铜网放到你的样品里,手动摇一会即可。这样做样品可以不用乙醇分散的,观察前用洗耳球吹掉大颗粒即可,一般的纳米级样品这样都能挂样。只是刮样的均匀度比较差些。

    还有取一点样品放到研钵里,用铜网像工地筛沙一样多抄几次也是可以的。

    34.关于醋酸双氧铀的放射性

    醋酸双氧铀中铀236的半衰期长达2400万年,没多大问题,可以放心用!

    35.内标法

    采用已知晶格样品(金颗粒),在相同电镜状态下(高压),对应一些列相机长度,相机长度L就是你说的0.4、0.8和1米,通过电镜基本公式H=Rd=Ls,(H相机常数s为波长),可以得到一组相机常数,保留好。以后就可以很方便的用了

    36.什么软件可以模拟菊池图?

    JEMS可以,画电子衍射花样的时候选上菊池线就行了。

    37.透射电镜的金属样品怎么做?

    包括金属切片、砂纸打磨、冲圆片、凹坑研磨、双喷电解和离子减薄、FIB制样(块体样品的制样神器)。

    38.透射电镜薄膜样品制备的几种方法(真空蒸发法,溶液凝固法,离子轰击减薄法,超薄切片法,金属薄膜样品的植被)的介绍

    可以参考《电子显微分析》章晓中老师、《材料评价的分析电子显微学方法》刘安生老师

    39.四氧化锇的问题

    样品用四氧化锇溶液浸泡,一方面可以对弹性体进行染色,一方面可以使塑料硬化。四氧化锇挥发性果真强,把安醅瓶刻痕,放进厚玻璃瓶,用橡皮塞塞紧,晃破安醅瓶,用针筒注蒸馏水,使其溶解,当把橡皮塞拿开换成玻璃塞时,发现橡皮塞口部已经完全被熏黑!使用时一定要加防护,戴防护面具,手套,在毒气柜中操作,毒气柜上排气一定要好.这样对自己和他人都好!

    40.制作高分子薄膜(polymer film)电镜样品

    一般都是在玻璃或者ITO衬底上甩膜后,泡在水中,然后将膜揭下来。不过对于厚度小于100nm的薄膜,是很难用这种方法揭下来的。高分子溶液甩膜在光滑的玻璃上面(玻璃要用plazmaor uv ozon处理过), 成膜后立即放在水里面,(不要加热和烘干,否则取不下来)利用水的张力,然后用塑料镊子从边缘将薄膜与玻璃分开,可以处理大约70nm的膜。然后将膜放在grid上面就可以了!

    41.如何将三个晶面指数转化成四个的晶面指数

    三轴晶面指数(hkl)转换为四轴面指数为(hkil),其中i=-(h+k)

    六方晶系需要用四轴指数来标定,一般的晶系如立方、正交等用三轴指数就可以了。

    42.能谱的最低探测极限

    在最佳的实验条件下,能谱的最低探测极限在0.01-0.1%上下,离ppm还有些距离。如果可以制成TEM样品,也许可以试试电子全息。半导体里几个ppm的参杂可以用这个方法观察到。

    43.CCD比film的优势

    当前的TEM CCD已经可以完全替代底片,在像素点尺寸(小于20um)、灵敏度、线性度、动态范围、探测效率和灰度等级均优于film。由于CCD极高的动态范围,特别适合同时记录图像和电子衍射谱中强度较大的特征和强度较弱的精细结构。

    44.小角度双喷,请教双喷液如何选择?

    吴杏芳老师的书上有一个配方:

    Cu化学抛光:50%硝酸+25%醋酸+25%磷酸 20摄氏度

    CuNi合金:电解抛光 30mL硝酸+50mL醋酸+10mL磷酸

    --电子显微分析实用方法,吴杏芳 柳得橹编

    45.非金属材料在喷金时,材料垂直于喷金机的那个垂直侧面是否会有金颗粒喷上去?

    喷金时正对喷头的平面金颗粒最多,也是电镜观察的区域,侧面应该少甚至没有,所以喷金时一般周围侧面用铝箔来包裹起来增加导电性。

    46.Z衬度像是利用STEM的高角度暗场探测器成像,即HAADF。能否利用普通ADF得到Z衬度像?

    原子分辨率STEM并不是HAADF的专利,ADF或明场探头也可以做到,只是可直接解释性太差,失去了Z衬度的优势。HAADF的特点除了收集角高以外,其采集灵敏度也大大高于普通的ADF探头。高散射角的电子数不多,更需要灵敏度。ADF的位置通常很低,采集角不高(即使是很短的相机长度),此外它的低灵敏度也不适合弱讯号的收集。

    47.透射电镜简单分类?

    透射电镜根据产生电子的方式不同可以分为热电子发射型和场发射型。热电子发射型用的灯丝主要有钨灯丝和六硼化镧灯丝;场发射型有热场发射和冷场发射之分。

    根据物镜极靴的不同可以分为高倾转、高衬度、高分辨和超高分辨型。

    48.TEM要液氮才能正常操作吗?

    不同于能谱探头,TEM液氮冷却并不是必须的,但它有助于样品周围的真空度,也有助于样品更换后较快地恢复操作状态。

    49.磁性粒子做电镜注意事项?

    1.磁性粒子做电镜需要很谨慎,建议看看相关的帖子

    2.分散剂可以用表面活性剂,但是观察的时候会有局部表面活性剂在电子束辐照下分解形成污染环,妨碍观察。

    50.电压中心和电流中心的调整?

    HT wobbler调整的是电压中心,OBJ wobbler调整的是电流中心,也有帮助聚焦的wobbler-image x和imagey。

    51.水热法制备的材料如何做电镜?

    水热法制备的材料容易含结晶水,在电子束的辐照下结构容易被破坏,试样在电镜的高真空中过夜,有利于去掉部分结晶水。估计你跟操作的老师说了,他就不让你提前放样品了。

    52.TEM磁偏转角是怎么一会事,而又怎样去校正磁偏转角?

    一般老电镜需要校正磁偏转角,新电镜就不用做了。现在的电镜介绍中都为自动校正磁偏转角。

    53.分子筛为什么到导电?

    分子筛的情况应该跟硅差不多吧。纯硅基本不导电,单硅原子中的电子不像绝缘体中的电子束缚的那么紧,极少量的电子也会因电子束的作用而脱离硅原子,形成少量的自由电子。留下电子的空穴,空穴带有正电,起着导电作用。

    54.电子衍射图谱中都会发现有一个黑色的影子,是指示杆的影子,影子的一端指向衍射中心。为什么要标记出这个影子在衍射图谱中呢?

    beam stopper主要为了挡住过于明亮的中心透射斑,让周围比较弱的衍射斑也能清晰的显现。

    55.HAADF-STEM扫描透射电子显微镜高角环形暗场像

    高分辨或原子分辨原子序数(Z)衬度像(high resolution or atomic resolution Z-contrast imaging)也可以叫做扫描透射电子显微镜高角环形暗场像(HAADF-STEM)这种成像技术产生的非相干高分辨像不同于相干相位衬度高分辨像,相位衬度不会随样品的厚度及电镜的焦距有很大的变化。像中的亮点总是反映真实的原子。并且点的强度与原子序数平方成正比,由此我们能够得到原子分辨率的化学成分信息。

    56.TEM里的潘宁规

    测量真空度的潘宁规不测量了,工程师让拆下清洗,因为没有"内卡钳",无法完全拆卸,只好用N2吹了一会儿,重新装上后也恢复正常了,但是工程说这样治标不治本,最好是拆卸后用砂纸打磨,酒精清洗.

    57.电子衍射时可否用自动曝光时间,若手动曝光.多少时间为宜?

    电子衍射不能用自动曝光,要凭经验。一般11或16秒,如果斑点比较弱,要延长曝光时间。

    58.CCD相机中的CCD是什么意思?

    电荷耦合器件:charge-coupled device

    具体可以参见《材料评价的分析电子显微方法》中Page35-42页。

    59.有公度调制和无公度调制

    有许多材料在一定条件下,其长程关联作用使得晶体内局域原子的结构受到周期性调制波的调制。若调制周期是基本结构的晶格平移矢量的整数倍,则称为有公度调制;若调制周期与基本结构的晶格平移矢量之比是个无理数,称为无公度调制。涉及的调制结构可以是结构上的调制,成分上的调制,以及磁结构上的调制。调制可以是一维的、二维的,和三维的。

    60.高分辨的粉末样品需要多细?

    做高分辨的粉末样品,就是研磨得很细、肉眼分辨不了的颗粒。几十个纳米已经不算小了。颗粒越小,越有可能找到边缘薄区做高分辨,越有利于能损谱分析;颗粒越大,晶体越容易倾转到晶带轴(比如做衍射分析),X-光的计数也越高。

    61.电镜灯丝的工作模式?

    钨或LaB6灯丝在加热电流为零时,其发射电流亦为零。增加加热电流才会有发射电流产生,并在饱和点后再增加加热电流不会过多地增加发射电流。没有加热电流而有发射电流,实际上就是冷场场发射的工作模式。但这也需要很强的引出电压(extraction voltage)作用在灯丝的尖端。

    62.晶体生长方向?

    晶体生长方向就是和电子衍射同方向上最低晶面指数的一个面,然后简化为互质的指数即可。比如如果是沿着晶体的生长方向上是(222),那么应该(111)就是生长方向。

    63.N-A机制

    小单晶慢慢张大,最后重结晶成单晶,叫做N-A机制,nucleation-aggregation mechanism.

    64.透射电镜能否获得三维图象?

    可以做三维重构,但需要特殊的样品杆和软件。

    65.纳米纤维TEM

    做PAN基碳纤维,感觉漂移现象可能是两个原因造成的:一是样品没有固定好,二是导电性太差。我们在对纤维样品做电镜分析时一般采用把纤维包埋然后做超薄切片的方法,如果切的很薄(30~50nm),可以不喷金,直接捞到铜网中观察即可。

    66.离子减薄过程

    在离子减薄之前,应该用砂纸和钉薄机对样品进行机械预减薄,机械预减薄后样品的厚度为大约10微米,再进行离子减薄。

    离子减薄时,先用大角度15-20度快速减薄,然后再用小角度8-10度减至穿孔。

    67.四级-八级球差矫正器的工作原理?

    如果想要了解一下原理,看看相关的文章就可以了。

    比如

    Max Haider et al,Ultramicroscopy 75 (1998) 53-60

    Max Haider et al,Ultramicroscopy 81 (2000) 163-175

    68.明场象和暗场象

    明场象由投射和衍射电子束成像,

    暗场象由某一衍射电子束(110)成像,看的是干涉条纹。

    69.在拍照片时需要在不同的放大倍数之间切换,原先调好的聚光镜光阑往往会在放大倍数改变后也改变位置,也就是光斑不再严格同心扩散,为什么?

    这很正常,一般做聚光镜光阑对中都是在低倍(40K)做,到了高倍(500K)肯定会偏,因为低倍下对中不会对的很准。

    一般来说,聚光镜光阑我都是最先校正的,动了它后面那几项都要重新调的。准备做高分辨的时候,一般直接开始就都在准备拍高分辨的倍数下都合好了,这样比较方便。

    70.能量过滤的工作原理是什么?

    能量过滤像的工作原理简单的可以用棱镜的分光现象来理解,然后选择不能能量的光来成像。

    能量过滤原理是不同能量(速度)电子在磁场中偏转半径不一样(中学时经常做的那种计算在罗伦茨力作用电子偏转半径的题),那么在不同位置上加上一个slit,就这样就过滤出能量了。

    71.真空破坏的后果

    影响电镜寿命倒不会,影响灯丝寿命是肯定的。

    72.EDX成分分析结果每次都变化

    EDX成分分析结果每次都变化的情况其实很简单,在能谱结果分析软件中,View菜单下有个Periodic table, 在其ROI情况下选择你要作定量的元素,鼠标右键选出每个元素所要定量的峰,重新作定量就不会出现你所说的问题。

    73.使用2010透射电子显微镜时,发现:当brightness聚到一起时,按下imag x 呈现出两个非同心的圆,调整foucs就会使DV 只不等于零。请问各位,如果想保持dv=0,需要进行怎样的调整?

    把dv调节到+0,然后用z轴调节样品高度,使imagex的呈最小抖动即可。

    74.图象衬度问题

    乐凯的胶片衬度比柯达的要差一些,但性价比总是不错的。建议使用高反差显影液来试试。

    可以用暗场提高衬度,我一直在用暗场拍有机物形貌!wangmonk(2009-6-06 07:33:02)

    75.高分子染色的问题

    磷钨酸是做负染样品用的染液,我们通常用1%或2%的浓度,浓度大了会出现很多黑点或结晶状团块.另外样品本身浓度很关键,可多试几个浓度.样品中如果有成分易与染液结合的也会出现黑点或黑聚集团.磷钨酸用来染色如尼龙即聚酰胺可使其显黑色,以增加高分子材料的衬度。而锇酸可以使带双键的高分子材料显黑色。

    根据自己的要求选择合适的染色剂是观察的关键!

    76.什么是亚晶?

    亚晶简单的说就是在晶粒内部由小角晶界分隔开的,小角晶界主要由位错构成,相邻的亚晶的晶体取向差很小。

    77.FFT图与衍射图有什么对应的关系呢?

    它们都是频率空间的二维矢量投影, 都是和结构因子有关的量,都可以用于物相标定,但在衍射物理中含义不同,运算公式不同,不可混为一谈。

    FFT是针对TEM图像的像素灰度值进行的数学计算,衍射是电子本身经过样品衍射后产生的特殊排列。

    78.调幅结构的衍射图什么样的?

    衍射斑点之间有很明显的拉长的条纹。

    80.什么是明场、暗场、高分辨像?

    在衍射模式下,加入一个小尺寸的物镜光阑,只让透射束通过得到的就是明场像;只让一个衍射束通过得到的就是暗场像;加一个大的物镜光阑或不加,切换的高倍(50万倍以上)成像模式,得到高分辨像。当然能不能得到高分辨像还要看晶带轴方向、样品的厚度和离焦量等是否合适。

    二、样品制备-使用离子溅射仪改善SEM成像

    离子溅射仪为扫描电子显微镜(SEM)最基本的样品制备仪器,在一些情况下,通过使用离子溅射仪可以帮助SEM获得更好的图像及特征点。

      SEM基本上是可以对所以类型的试样进行图像处理,粉末,半导体,高分子材料,陶瓷,金属,地质材料,生物样品等。然而有些特殊的样品通过SEM收集高质量的照片,是需要操作者使用额外的样品制备的方法,这个额外的样品制备方法,通常是在试样的表面溅射一层导电薄膜材料,通常在5-20nm左右。

       需要溅射的样品

    非导电材料

    通常我们需要溅射喷金的非导电材料,由于它们的材料本身的非导电性,其表面带有电子陷阱,这种表面的电荷的聚集,容易造成样品表面的放电现象,是严重影响到样品的图像质量。为了消除放电现象,我们通常的解决问题的方法是降低扫描电镜样品室的真空度,这样可以将样品表面的引入正电荷的分子,它可以与放电电子相互中和,从而消除放电现象,但是此种方法并不是获取高分辨率的图像的有限办法。

    获取高分辨率高质量的SEM图像,建议操作人员使用 离子溅射仪 ,在样品表面溅射一层金属薄膜,将放电电子从样品表面转移走。

    电子束敏感样品

      对于SEM需要喷金的另外一类样品室电子束敏感样品。这类样品通常是生物样品和高分子样品,尤其是锂电池隔膜等。SEM的电子束具有较高的能力,在电子轰击样品的过程中,他会在样品的表面形成能力的聚集,会对样品的表面形成灼伤,从而损坏样品表面的微观相貌,这种情况下,我们会在非电子束敏感样品的表面溅射一层金属薄膜从而起到保护作用,防止样品的损失。

    为了准确高分辨率高质量的SEM图像,建议操作人员选择使用离子溅射仪,在样品表面溅射一层导电通路。 离子溅射仪 的样品制备技术可以有效的提高SEM图像的质量和分辨率,在扫描电子显微镜的成像过程中,溅射材料可以有效的提高信噪比,从而获取更高质量的成像。

    离子溅射仪的缺点

      由于操作简单,在使用离子溅射仪的过程中,操作人员大可不必有太多的顾虑,在操作人员需要不断调整离子溅射仪的参数,寻找合适的溅射效果,另外离子溅射有一个缺点是,溅射后的样品,不再是原始的材料,元素的衬度信息会有所丢失。但在大多数的情况下,通过多次模式参数,操作人员是可以既能够得到高分辨高质量的图像,又不会丢失样品的原始信息。

    溅射材料

      通常溅射的材料是金属材料,因为导电性高,溅射颗粒小,例如我公司生产的GVC-2000磁控离子溅射仪,在溅射黄金靶材的时候,我们可以达到5-10nm的金属颗粒,如果选用铂金颗粒的直径会更小达到5nm以内,此款仪器主要配备各大电镜厂家生产的场方式电镜,正是因为溅射的颗粒小,在高分辨下,图像是没有颗粒感,可以得到较高的质量的电镜图像。

      此外,如果需要EDS能谱分析时,SEM操作人,可以通过EDS分析软件屏蔽靶材的元素选项,从而不会影响X射线与其他的元素的峰值发生冲突。

    当然,我公司生产的 GVC-2000磁控离子溅射仪 ,可以支持多种靶材的选项,例如,铬,银,铜,铱等,如铜,铝等是需要接入氩气的,仪器预留好了氩气接口,可以支持链接氩气瓶使用,从而得到更小的金属颗粒,获取更高分辨率的图像。

    https://www.microhezao.com

    三、拓扑光子学—半导体技术发展的高速公路

    激光、芯片和量子电路都可以从这种模糊的现象中受益

    自2007年拓扑绝缘体首次问世以来,这种内部绝缘、外部导电的新型材料激发了研究人员对其在电子领域的潜力的兴趣。然而,一种相关但更模糊的材料——拓扑光子,可能会首先达到实际应用。

    拓扑学是数学的一个分支,研究形状的哪些方面能承受变形。例如,一个形状像环的物体可以变形成杯子形状,环上的孔形成了杯子柄上的孔,但是不能变形成没有孔的形状。

    利用拓扑学知识,研究人员开发了拓扑绝缘体。沿这些材料的边缘或表面移动的电子能强烈地抵抗任何可能阻碍它们流动的干扰,就像变形环上的空穴能抵抗任何变化一样。

    最近,科学家们设计了一种光子拓扑绝缘体,在这种绝缘体中,光具有类似的“拓扑保护”。“这些材料在结构上有规律的变化,使得特定波长的光沿着它们的表面流动,而不会散射或损失,甚至在角落和缺陷周围。”

    拓扑光子学的三个有前途的潜在用途:

    扫描电子显微镜图像中显示的电子驱动拓扑激光以太赫兹频率工作。

    拓扑激光在这些新材料的第一个实际应用中可能是包含拓扑保护激光。例如,南加州大学的Mercedeh Khajavikhan和她的同事们开发了拓扑激光器,这种激光器比传统设备更有效,而且被证明更能抵抗缺陷。

    第一个拓扑激光器每一个都需要一个外部激光来激发它们工作,但限制了实际应用。然而,新加坡和英国的科学家最近开发了一种电力驱动的拓扑激光器。

    研究人员首先将砷化镓和砷化铝层夹在一起制成晶圆。当带电时,晶圆片发出明亮的光。

    科学家们在晶圆片上钻了一个晶格孔。每个孔就像一个等边三角形,四角被削掉了。格子周围是形状相同的洞,方向相反。

    晶圆片上受拓扑保护的光沿着不同孔组之间的界面流动,并以激光束的形式从附近通道中出现。新加坡南洋理工大学的电气和光学工程师王奇杰介绍,该设备被证明具有很强的抗缺陷能力。

    激光工作在太赫兹频率,这对成像和安检是有用的。Khajavikhan和她的同事们现在正在开发一种可以在近红外波段工作的激光雷达,可能用于电信、成像和激光雷达。

    扫描电子显微镜(SEM)图像显示了宾夕法尼亚大学开发的一种光子拓扑绝缘体。

    通过使用光子而不是电子,光子芯片有望比传统电子设备更快地处理数据,这可能支持5G甚至6G网络的高容量数据路由。光子拓扑绝缘子在光子芯片中具有特殊的应用价值,可以引导光绕过缺陷。

    然而,拓扑保护只在材料的外部起作用,这意味着光子拓扑绝缘体的内部有效地浪费了空间,极大地限制了这种设备的紧凑程度。

    为了解决这个问题,宾夕法尼亚大学的光学工程师梁峰和他的同事们开发了一种具有边缘的光子拓扑绝缘体,他们可以对其进行重新配置,这样整个设备就可以传输数据。他们制造了一个250微米宽的光子芯片,并在上面蚀刻了椭圆环。通过外部激光泵入芯片,他们可以改变单个光圈的光学特性,这样“我们就可以把光送到芯片中我们想要的任何地方,”冯介绍到。——从任何输入端口到任何输出端口,甚至是一次多个输出端口。

    总而言之,该芯片承载的端口数是目前最先进的光子路由器和交换机的数百倍。研究人员现在正在开发一种集成的方式来完成这项任务,而不是要求用芯片外的激光来重新配置芯片。

    这幅艺术家的渲染图显示了受地形保护的光子在硅波导中移动。

    在理论上基于量子位元的量子计算机是非常强大的。但是基于超导电路和捕获离子的量子位很容易受到电磁干扰,因此很难扩展到有用的机器上。但基于光子的量子位元可以避免这类问题。

    量子计算机只有在它们的量子位元被“纠缠”,或连接在一起作为一个量子位元时才能工作。纠缠态是非常脆弱的,研究人员希望拓扑保护可以保护光子量子位元不受散射和当光子遇到不可避免的制造错误时可能发生的其他干扰。

    光子科学家Andrea Blanco-Redondo现在是诺基亚贝尔实验室硅光子学的负责人,她和她的同事们制作了硅纳米线的格子,每条宽450纳米,并将它们平行排列。晶格中的纳米线偶尔会被两道粗缝与其它纳米线隔开。这在晶格中产生了两种不同的拓扑结构,而沿着这些拓扑结构边界向下移动的纠缠光子在拓扑结构上得到了保护,即使研究人员在晶格上添加了缺陷。希望这种拓扑保护可以帮助基于光的量子计算机解决远远超出主流计算机能力的问题。

    利用拓扑光子学创造激光束,性能出乎意料的优秀

    光纤激光器是最为广泛应用的一种激光器。根据预测,全球光纤激光器的销售额将由 2017年的 15.90 亿美元增加到 2020 年的 25.00 亿美元,年复合增长率为 16.28%。随着激光器的急速发展,相应的,各国在激光技术上的研究也从未停止过。

    在最新的研究中,以色列海法Technion研究所的Mordechai Segev及其团队基于拓扑光子学创造了一个激光束,且其中的光波是同相的。这就意味着该技术的能量损耗将会更低,即激光发射效率更高。

    实验中,研究团队将一系列圆形通道蚀刻到半导体材料芯片的表面,并从芯片上方将红外光投射到该结构上,这些圆形通道精确捕获特定波长的光波,然后使光波从一个环路移动到下一个环路,以形成光子系统。

    但是在光子系统中,波传播的方向是可逆的,这样会导致能量损耗。去年,在加利福尼亚大学BoubacarKanté的研究中,他采用磁场来限制波的传播来解决这个问题;与之不同的是,此次Segev采用的是,圆形通道的不对称设计,该设计本身就会优先筛选波的一个方向的传播,这样不但避免了能量损耗的问题,还使得循环光脉冲被增强或放大。

    两种方法有着本质的区别,虽然BoubacarKanté的方法形成了激光束,但是利用磁场对其进行限制或多或少对激光束的发射能量进行了削弱,而Segev的改进则要巧妙得多。

    对此,Segev说道:“这要得益于拓扑保护,该系统完美的告诉我们不完美的恰恰是最稳定的。”

    “大多数物理学家怀疑拓扑光子学会和激光产生兼容,从而导致发射不了激光,但事实上,这些系统通常比我们现有的系统更容易工作。”

    四、从几个方面判定元器件国产化率

    目前, 我国半导体市场供需两层不匹配,国产化率亟需提升 。一方面,终端产品供需不匹配。 2018年中国集成电路市场规模1550亿美元,但国产集成电路规模仅238亿美元,国产化率仅约15%;另一方面,制造端的设备供需不匹配。国内半导体设备市场规模约145亿美元,但国产设备规模仅14亿美元不到,国产化率仅约10%。因此,从产业发展的角度,一方面,国内半导体制造领域仍有较大发展空间;另一方面,制造领域的设备仍有较大的国产提升空间。

    我们推荐中信建投的研究报告《半导体设备国产进程加速》,解析半导体国产化现状,政策、资金、产业等推动因素,并讨论半导体设备市场格局与国产化进度。如果想收藏本文的报告(半导体设备),可以在智东西公众号回复关键词“nc404”获取。

    一、提升国产化率刻不容缓

    1、 我国半导体市场规模和占比不断提升

    2010年起,全球半导体行业保持稳步增长,过去十年( 2009-2018年)全球半导体销售额CARG为7.55%,全球GDP CAGR为3.99%,而我国集成电路销售额CARG为25.03%,我国行业整体增速为全球半导体行业增速的3.3倍,而全球半导体行业整体增速是全球GDP增速的2倍左右;

    与此同时,在PC、智能手机等领域强大的整机组装制造能力使我国成为全球最大的半导体消费市场,在全球占比达到了33%,比第二名的美洲高出11个百分点,我国半导体市场无论是绝对规模增速还是占比都不断提升。

    ▲我国半导体规模和占比不断提升

    ▲2018年全球半导体产业市场规模分布

    2、 我国半导体市场供需不匹配

    一方面,终端产品供需不匹配。2018年中国集成电路市场规模1550亿美元,但国产集成电路规模仅238亿美元,国产化率仅约15%;

    另一方面,制造端的设备供需不匹配。2018年中国半导体设备市场规模达到131.1亿美元,但据中国电子专用设备工业协会统计, 2018 年国产半导体设备销售额预计为 109 亿元,自给率仅约为12%。考虑到以上数据包括集成电路、 LED、面板、光伏等设备,实际上国内集成电路设备的国内自给率仅有 5%左右,在全球市场仅占 1-2%份额。半导体设备进口依赖长期看将严重阻碍中国半导体行业的自主发展,国内需求与国内供给的缺口昭示着巨大的国产化空间。

    ▲2018年国产半导体集成电路自给率仅15%

    ▲2018年国产半导体设备自给率仅12%

    3、 贸易战对我国半导体核心技术“卡脖子”

    美国制裁中兴华为反映创新“短板”,华为事件影响深远,引发全球半导体供应链“地震”,暴露出核心技术被“卡脖子”的风险,催化国内半导体等核心科技领域发展,国产自主可控替代有望加速;

    半导体行业产业链中上游为我国薄弱环节,其中上游半导体设备和中游制造对美依存度高,核心领域国产芯片占有率多数为0%;相比之下,中游封测和下游终端市场领域对美依存度小,受到影响相对较小。

    ▲半导体产业链受贸易战影响分化

    4、 后贸易战时期,国内半导体设备厂商的一些变化

    设备企业前瞻布局非美国地区零部件采购 。一般来说,半导体设备的零部件分为四大部分。在这四大类中,精密加工件、普遍加工件现在基本没有制约,通用外购件(包括接头、气缸、马达等)占比比较小,因此现阶段供应管理关注的重点是外购大模块, 包括设备专用模块和通用模块(机械手、泵等)。外购大模块数量上占比不高,可能只有10-20%,但价值占比60-80%;

    所以我们讲零部件的国产化,主要是讲外购大模块的国产化。预防产业风险和成本控制需要通过对外购大模块进行供应链拓展、批量采购等方式实现。

    ▲外购大模块受产业影响风险较大

    大部分品类现阶段国内基础差,没有成熟技术,没有产品。从进口比例来看,前十大子系统供应商中,美国市场和日本市场占比最高。设备企业正逐渐将采购链条从美国转移至日本、英国等地区。

    ▲前十大零部件采购需求占比及前十大子系统供应商占比

    二、国产化的推动因素

    1、 全球半导体行业景气度有望触底回暖

    理论上看,全球半导体行业具有技术呈周期性发展、市场呈周期性波动的特点 。1998~2000年,随着手机的普及和互联网兴起,全球半导体产值不断上升,尤其在2000年增长38.3%;随着互联网泡沫的破裂, 2001年全球半导体市场下跌32%;随后Window XP的发布,全球开始新一轮PC换机潮,半导体市场2002~2004年处于高速增长阶段;2005年半导体市场出现了周期性回落, 2008年和2009年受金融危机的影响出现了负增长;

    2010年,随着全球经济的好转,全球半导体产值增长34.4%。2011-2012年受欧债危机、美国量化宽松货币政策、日本地震及终端电子产品需求下滑影响,半导体销售增速分别下降为 0.4%和-2.7%;

    2013年以来, PC、手机、液晶电视等消费类电子产品需求不断增加,全球半导体产业恢复增长,增速达 4.8%。2014年全球半导体销售市场继续保持增长态势,增速达 9.9%;2015-2016年,全球半导体销售疲软。

    2017年,随着AI芯片、 5G芯片、汽车电子、物联网等下游的兴起,全球半导体行业重回景气周期。

    2018年下半年,受到存储器价格下降、全球需求疲软和中美贸易战的影响,全球半导体发展动力不足。但展望2019年下半年,受益于消费领域、智能手机需求回暖,全球半导体市场发展趋稳并有望实现增长。

    2、 上游半导体设备销售有望随之向好

    数据上看, 2019年全球半导体设备销售同比负增长, 2020年将大幅反弹 。2018年,全球半导体设备销售额达645亿美元,同比增速高达14%,创下历史最高;受到多因素影响, 2019年半导体设备厂商短期承压, SEMI预计2019年全球半导体设备销售下降18.4%至529亿美元。

    展望2020年,由于存储器投资复苏和在中国大陆新建及扩建工厂, SEMI预计半导体制造设备2020年的全球销售额为588亿美元,比2019年增长12%。其中,包括外资工厂在内的对中国大陆销售将达到145亿美元, 预计中国大陆成为半导体制造设备的最大市场。

    3、 我国政策、资金、市场环境三面扶持

    对标海外:政策支持、资金帮扶、下游产业支撑是推动行业进步不可或缺的几个方面 。 80年代工业PC时代,日本半导体以存储器(DRAM为主)为切入口,在日本政府和产业界联合推动下,吸收美国技术并整合日本工业高质量品控体系,实现IC产品超高可靠性,顺利实现赶超美国;

    90年代消费电子大潮,韩国半导体在韩国政府和财团的共同推动下,积极开拓高性价比IC产品,带动亚洲电子产业链崛起,实现了长达20多年的持续崛起。而此时的台湾则通过创新的产业模式,从IDM转为垂直分工,依靠大量投资建成了世界领先的晶圆代工厂台积电和联电,在技术水平上达到世界顶尖;

    ▲政策支持、资金帮扶、下游产业支撑是推动行业进步不可或缺的几个方面

    政策:产业政策频发,彰显扶持半导体产业决心 。“十二五”期间,政府开始大力支持IC产业发展,先后出台了《国家IC产业发展推进纲要》 和“国家重大科技专项”等政策。其中以2014年发布的纲要最为详细,被视为国家为IC产业度身定制的一份纲要,明确显示了政策扶持半导体产业的决心。

    2014年9月,国家IC产业基金正式成立。以直接入股方式,对半导体企业给予财政支持或协助购并国际大厂。

    目前我国半导体产业的自给率才只有不到15%, 《中国制造2025》 的目标是2020年自给率达40%,2050年达到50% 。

    ▲根据规划, 2015-2020年, IC产业产值CAGR达20%以上

    资金:截至2018年5月,一期大基金已累计投资70个项目,承诺出资1200亿,实际出资1387亿 。已实施项目覆盖设计、制造、封装测试、设备、材料、生态建设各环节;一期大基金主要投向芯片制造环节,占全部承诺投资额的67%,目前已经支持了中芯国际、上海华虹、长江存储等;在设计领域,大基金主要在CPU、 FPGA等高端芯片领域展开投资,占承诺投资额的17%;在封装测试产业方面,大基金则重点支持长电科技、华天科技、通富微电等项目,占承诺投资额的10%;

    相比之下,大基金在装备和材料环节的投资规模和力度要小很多,但仍然在推进光刻、刻蚀、离子注入等核心装备抓住产能扩张时间窗口,扩大应用领域。

    ▲国家大基金资金主要投向集成电路制造环节

    资金:大基金二期募资规模2000亿左右,加强设备领域投资 。

    ▲二期大基金将加强设备领域投资

    资金:大基金撬动地方基金,集成电路产业正迎来密集投资期 。IC产业属于资本开支较重的产业,“大投入,大收益;中投入,没收益,小投入,大亏损” ; 全球看,每年半导体资本开支接近600亿美元,而英特尔、台积电、三星等巨头每年的资本开支均在100 亿美元左右,只凭大基金的支持仍然投入有限; 根据我们的统计,除了规模近1400亿的大基金之外,各集成电路产业聚集的省市亦纷纷成立地方集成电路基金,截至到2019年4月,全国有15个以上的省市成立了规模不等的地方集成电路产业投资基金,总计规模达到了5000亿元左右。通过大基金、地方基金、社会资金以及相关的银行贷款等债券融资,未来10年中国半导体产业新增投资规模有望达到10000亿元水平。

    ▲中国各省市开始密集投资布局半导体产业

    市场:大陆建厂潮为半导体设备行业提供了巨大的市场空间 。根据SEMI发布的全球晶圆厂预测报告预估, 2017 -2020年的四年间,全球预计新建 62 条晶圆加工线,其中中国大陆将新建26座晶圆厂,成为全球新建晶圆厂最积极的地区,整体投资金额预计占全球新建晶圆厂的 42%,为全球之最。

    市场:大陆半导体资本开支持续增长,拉动半导体设备发展 。当前大陆成为全球新建晶圆厂最积极的地区,以长江存储/合肥长鑫为代表的的存储器项目和以中芯国际/华力为代表的代工厂正处于加速扩产的阶段,预计带来大量的设备投资需求。

    三、半导体设备市场竞争格局与国产化进度

    1、IC制造流程复杂,大多数设备被国外厂商垄断

    晶圆制造(前道,Front-End) :

    ▲晶圆制造环节具体设备及主要厂商封装(后道,Back-End )测试 :

    ▲封装测试环节具体设备及主要厂商

    全球集成电路装备市场总体高度垄断 。特点:技术更新周期短带来的极强技术壁垒,市场垄断程度高带来的极大市场壁垒,以及客户间竞争合作带来的极高认可壁垒。因此,集成电路装备市场高度垄断,细分市场一家独大;从分布看,全球前十大集成电路装备公司基本上被美国、日本、欧洲企业占据; 从比例看,全球前十大拿走行业80%的份额;应用材料(美国)、 ASML(荷兰)、 TEL东京电子、泛林(美国)、科磊(美国)位列前五,前五名拿走68%的份额;前30拿走92%的份额,前20拿走87%的份额。

    ▲全球IC装备市场高度垄断

    全球IC制造细分设备市场也高度垄断 。从细分设备来看,每个具体设备基本上大部分份额被前三大企业占据,基本上都是80-90%的份额; 前三大厂商中,也基本都是一家独大,第一占据了40-50%的份额。

    ▲细分设备市场也高度垄断

    我国集成电路装备市场高端占比偏小,且大部分为国外厂商 。2018年中国半导体设备市场规模达到131.1亿美元,但据中国电子专用设备工业协会统计, 2018 年国产半导体设备销售额预计为109亿元;预计2020年中国半导体设备总市场规模将超1000亿。

    ▲国内厂商规模普遍较小,且大部分在光伏、 LED领域占比较高

    边际变化:在诸多工艺环节中,开始出现了一些国产厂商 。分地区看,形成三个产业集群:北京:北方华创、中电科集团、天津华海清科(CMP);上海:上海微电子、上海中微半导体、上海盛美、上海睿励科学仪器;沈阳:沈阳拓荆、沈阳芯源;

    ▲主流65-28nm客户不定量的采购的12类设备清单

    ▲国内已有9项应用于14nm的装备开始进入生产线步入验证

    75-80%的资本开支使用在设备投资里,设备投资中的70-80%在晶圆制造环节设备里 。光刻设备、刻蚀设备、薄膜设备( ALD/CVD 53%、 PVD 47%)占比最高,分别20-25%、 25%、 20-25%;扩散设备、抛光设备、离子注入设备各占设备投资的5%,量测设备占设备投资的5~10%。

    ▲晶圆生产线各类设备投资占比

    2、 光刻设备:光刻机是生产线上最贵的机台, ASML全球领先

    光刻工艺是最复杂的工艺,光刻机是最贵的机台 。主流微电子制造过程中, 光刻是最复杂、昂贵和关键的工艺,占总成本的1/3;目前的28nm工艺则需要20道以上光刻步骤,耗费时间约占整个硅片工艺的40~60%。光刻工艺决定着整个IC工艺的特征尺寸,代表着工艺技术发展水平;

    具体流程: 首先要在硅片上涂上一层耐腐蚀的光刻胶,随后让强光通过一块刻有电路图案的镂空掩模板照射在硅片上。被照射到的部分(如源区和漏区)光刻胶会发生变质,而构筑栅区的地方不会被照射到,所以光刻胶会仍旧粘连在上面。接下来就是用腐蚀性液体清洗硅片,变质的光刻胶被除去,露出下面的硅片,而栅区在光刻胶的保护下不会受到影响。

    光刻机是生产线上最贵的机台,千万-亿美元/台。主要是贵在成像系统(由15~20个直径为200~300mm的透镜组成)和定位系统(定位精度小于10nm)。一般来说一条产线需要几台光刻机,其折旧速度非常快,大约3~9万人民币/天,所以也称之为印钞机。

    ASML占据70-80%市场份额,且领先地位无人撼动 。荷兰ASML占据超过70%的高端光刻机市场,且最新的产品EUV光刻机售价高达1亿美元,依旧供不应求。紧随其后的是Nikon和Canon。 光刻机研发成本巨大, Intel、台积电、三星都主动出资入股ASML支持研发,并有技术人员驻厂;格罗方德、联电及中芯国际等的光刻机主要也是来自ASML;

    国内光刻机厂商有上海微电子、中电科集团四十五研究所、合肥芯硕半导体等。在这几家公司中,处于技术领先的是上海微电子,其已量产的光刻机中性能最好的是90nm光刻机。由于技术难度巨大,短期内还是处于相对劣势的地位。

    ▲1970年起,光刻机价格每4.4年翻一倍

    3、 刻蚀设备:机台国产化率已达15%

    国产刻蚀机的机台市场份额已约15% 。工艺流程: 所谓刻蚀,狭义理解就是光刻腐蚀,先通过光刻将光刻胶进行曝光处理,然后通过其它方式实现腐蚀处理掉所需除去的部分。刻蚀可分为干法刻蚀和湿法刻蚀。显而易见,它们的区别就在于湿法使用溶剂或溶液来进行刻蚀。

    刻蚀设备分类: 在8寸晶圆时代,介质(40%)、多晶硅(50%)及金属刻蚀(10%)是刻蚀设备三大块;进入12寸后,随着铜互连的发展,介质刻蚀份额逐渐加大,目前已近50%;

    中微半导体的16nm刻蚀机已实现商业化量产并在客户的产线上运行, 7-10nm刻蚀机设备以达到世界先进水平。截至2018年末,中微半导体累计已有1100多个反应台服务于国内外40余条先进芯片生产线。目前中微产品已经进入第三代10nm、 7nm工艺(台积电), 5纳米等离子体刻蚀机已经台积电验证;除中微外,北方华创在硅刻蚀机方面也有突破。

    4、 成膜设备:机台国产化率约10-15%

    成膜设备分两大类, 机台市场份额约10-15% 。工艺流程: 在集成电路制备中,很多薄膜材料由淀积工艺形成。主要包括化学气相 (CVD)淀积和物理气相淀积 (PVD)两大类工艺; 一条投资70亿美元的芯片制造生产线,需用约5亿美金采购100多台PECVD设备; 从全球范围看, AMAT在CVD设备和PVD设备领域都保持领先;北方华创、中微公司等企业等小有突破:其中北方微电子的PVD可用于28nm的hard mask工艺,并且可以量产;中微两条线推进CVD,一方面中微应用于LED领域的MOCVD市占率已经全球领先 ,另一方面投资沈阳拓荆,完善产品线布局。

    ▲AMAT在CVD设备和PVD设备领域都保持领先

    ▲总体看, PVD是国产化进展较快的一类设备

    5、 检测设备

    半导体中的检测可分为前道量测和后道测试两大类 。其中前道检测更多偏向于外观性/物理性检测,主要使用光学检测设备、各类inspection设备;后道测试更多偏向于功能性/电性测试,主要使用ATE设备及探针台和分选机;从价值量占比看,前道量测设备也可称为工艺控制检测设备,是晶圆制造设备的一部分,占晶圆制造设备投资占比约10%;后道测试设备独立于晶圆制造设备,占全部半导体设备比例约8%。

    ▲可以简单把加工过程划分为前道晶圆制造与后道封装测试

    ▲量测设备和测试设备属于两个不同环节

    前道晶圆量测(Wafer Metrology)主要在wafer制造环节。在芯片制造过程中,为了保证晶圆按照预定的设计要求被加工,必须进行大量的检测和量测,包括芯片线宽度的测量、各层厚度的测量、各层表面形貌测量,以及各个层的一些电子性能的测量;用到的设备:缺陷检测设备、晶圆形状测量设备、 掩膜板检测设备、 CD-SEM(微距量测扫描式电子显微镜)、显微镜等。

    后道测试主要在封测环节,分为中测和终测 。后道中测(CP, circuit probe),主要在芯片封装前: 主要是测试整个晶圆片(wafer)上每个芯粒(die)的逻辑。简单来说, CP是把坏的Die挑出来并标记出来,后续只封装好的die。这样做可以减少封装和测试的成本,也可以更直接的知道Wafer的良率。用到的设备:测试机(IC Tester / ATE)、探针卡(Probe Card)、探针台(Prober)以及测试机与探针卡之间的接口等。

    后道终测(FT, final test),主要在芯片封装后:测试每颗封装好的芯片(chip)的逻辑。简单来说, FT是把坏的封装好的chip挑出来,可以直接检验出封装环节的良率;用到的设备:测试机(IC Tester)、分拣机/分类机(Handler)等。

    测试设备三大设备之ATE竞争格局:测试设备包括三大类:测试机、探针台、分选机,其中测试机市场空间占比过半;全球集成电路测试设备市场主要由美国泰瑞达和日本爱德万占据,两者总体合计市占率超过50%。细分来看,在测试机市场中, SOC测试机、存储器测试机的市场占比合计近90%,而爱德万+泰瑞达的市场份额超过80%;目前国内已经装配的测试系统主要偏重在低档数字测试系统、模拟及数模混合测试系统等,领先厂商包括长川科技、华峰测控、上海中艺等。本土厂商在中高档测试能力部分目前仍十分薄弱,尚无法与国外业者相抗衡(包括爱德万Advantest、泰瑞达Teradyne、 Verigy、居诺JUNO半导体等)。但目前国产中、高档测试系统已经研制成功,正进入小批量生产阶段。上市公司中,国产厂商长川科技正全面布局数模混合、模拟、数字信号测试机+探针台;精测电子已布局memory ATE和面板驱动IC ATE,期待后续产品出货。

    测试设备三大设备之探针台竞争格局:探针测试台(Prober)是前后道工序之间用于对半导体器件芯片的电参数特性进行测试的关键设备,它可以将电参数特性不符合要求的芯片用打点器(INKER)做一明显标记, 便于在后道工序中及时将其剔除, 这样就有效地提高了半导体器件生产的成品率,大大降低器件的制造成本。在具体测试的时候,晶圆被固定在真空吸力的卡盘上,并与很薄的探针电测器对准,同时探针与芯片的每一个焊盘相接触。 电测器在电源的驱动下测试电路并记录下结果。 测试的数量、顺序和类型由计算机程序控制。

    一般来说,探针台的单价在百万级别,远高于分选机。根据统计,探针台的市场份额约占总测试机+探针台+分选机的市场空间的15-20%左右。以东京电子(TEL)为代表的厂商雄霸全球探针测试设备市场,而国内厂商中,长川科技已有探针台产品布局。

    智东西认为,国内集成电路设备的国内自给率仅有 5%左右,在全球市场仅占 1-2%份额,而且,产业链中上游核心领域芯片多数占有率基本为0%。半导体设备进口依赖长期看将严重阻碍中国半导体行业的自主发展,国内需求与国内供给的缺口昭示着巨大的国产化空间。集成电路领域对外依赖十分严重,现在,集成电路已经成为我国进口金额最大的产品种类,进出口的贸易逆差逐年扩大,逆差增速还在持续提升。但是,在资金、政策、市场环境三方面利好下,市场格局正在发生深刻的变化,希望在未来的5-10年内,半导体行业被“卡脖子”的局面不复存在。

    以上就是关于半导体SEM设备相关问题的回答。希望能帮到你,如有更多相关问题,您也可以联系我们的客服进行咨询,客服也会为您讲解更多精彩的知识和内容。


    推荐阅读:

    半导体排行榜(中国功率半导体十强排行榜)

    世界半导体十大排名品牌(世界半导体十大排名品牌)

    杭州富芯半导体什么背景(杭州富芯半导体项目失败)

    新天地广场景观设计(新天地广场景观设计招聘)

    上海木箱包装(上海木箱包装材料有限公司)