数据分析方法(数据分析方法梅长林)
大家好!今天让创意岭的小编来大家介绍下关于数据分析方法的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。
创意岭作为行业内优秀的企业,服务客户遍布全球各地,相关业务请拨打电话:175-8598-2043,或添加微信:1454722008
本文目录:
一、数据分析方法有哪些
常用的数据分析方法有:聚类分析、因子分析、相关分析、对应分析、回归分析、方差分析。
1、聚类分析(Cluster Analysis)
聚类分析指将物理或抽象对象的集合分组成为由类似的对象组成的多个类的分析过程。聚类是将数据分类到不同的类或者簇这样的一个过程,所以同一个簇中的对象有很大的相似性,而不同簇间的对象有很大的相异性。
2、因子分析(Factor Analysis)
因子分析是指研究从变量群中提取共性因子的统计技术。因子分析就是从大量的数据中寻找内在的联系,减少决策的困难。因子分析的方法约有10多种,如重心法、影像分析法,最大似然解、最小平方法、阿尔发抽因法、拉奥典型抽因法等等。
3、相关分析(Correlation Analysis)
相关分析(correlation analysis),相关分析是研究现象之间是否存在某种依存关系,并对具体有依存关系的现象探讨其相关方向以及相关程度。
4、对应分析(Correspondence Analysis)
对应分析(Correspondence analysis)也称关联分析、R-Q型因子分析,通过分析由定性变量构成的交互汇总表来揭示变量间的联系。可以揭示同一变量的各个类别之间的差异,以及不同变量各个类别之间的对应关系。对应分析的基本思想是将一个联列表的行和列中各元素的比例结构以点的形式在较低维的空间中表示出来。
5、回归分析
研究一个随机变量Y对另一个(X)或一组(X1,X2,?,Xk)变量的相依关系的统计分析方法。回归分析(regression analysis)是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法。
6、方差分析(ANOVA/Analysis of Variance)
又称“变异数分析”或“F检验”,是R.A.Fisher发明的,用于两个及两个以上样本均数差别的显著性检验。由于各种因素的影响,研究所得的数据呈现波动状。
想了解更多关于数据分析的信息,推荐到CDA数据认证中心看看,CDA(Certified Data Analyst),即“CDA 数据分析师”,是在数字经济大背景和人工智能时代趋势下,面向全行业的专业权威国际资格认证, 旨在提升全民数字技能,助力企业数字化转型,推动行业数字化发展。 “CDA 数据分析师”具体指在互联网、金融、零售、咨询、电信、医疗、旅游等行业专门从事数据的采集、清洗、处理、分析并能制作业务报告、 提供决策的新型数据分析人才。
二、16种常用的数据分析方法汇总
一、描述统计
描述性统计是指运用制表和分类,图形以及计筠概括性数据来描述数据的集中趋势、离散趋势、偏度、峰度。 1、缺失值填充:常用方法:剔除法、均值法、最小邻居法、比率回归法、决策树法。 2、正态性检验:很多统计方法都要求数值服从或近似服从正态分布,所以之前需要进行正态性检验。常用方法:非参数检验的K-量检验、P-P图、Q-Q图、W检验、动差法。 二、假设检验 1、参数检验 参数检验是在已知总体分布的条件下(一股要求总体服从正态分布)对一些主要的参数(如均值、百分数、方差、相关系数等)进行的检验 。 1)U验 使用条件:当样本含量n较大时,样本值符合正态分布 2)T检验 使用条件:当样本含量n较小时,样本值符合正态分布 A 单样本t检验:推断该样本来自的总体均数μ与已知的某一总体均数μ0 (常为理论值或标准值)有无差别; B 配对样本t检验:当总体均数未知时,且两个样本可以配对,同对中的两者在可能会影响处理效果的各种条件方面扱为相似; C 两独立样本t检验:无法找到在各方面极为相似的两样本作配对比较时使用。 2、非参数检验 非参数检验则不考虑总体分布是否已知,常常也不是针对总体参数,而是针对总体的某些一股性假设(如总体分布的位罝是否相同,总体分布是否正态)进行检验。 适用情况:顺序类型的数据资料,这类数据的分布形态一般是未知的。 A 虽然是连续数据,但总体分布形态未知或者非正态; B 体分布虽然正态,数据也是连续类型,但样本容量极小,如10以下; 主要方法包括:卡方检验、秩和检验、二项检验、游程检验、K-量检验等。 三、信度分析 检査测量的可信度,例如调查问卷的真实性。 分类: 1、外在信度:不同时间测量时量表的一致性程度,常用方法重测信度 2、内在信度;每个量表是否测量到单一的概念,同时组成两表的内在体项一致性如何,常用方法分半信度。 四、列联表分析 用于分析离散变量或定型变量之间是否存在相关。 对于二维表,可进行卡方检验,对于三维表,可作Mentel-Hanszel分层分析。 列联表分析还包括配对计数资料的卡方检验、行列均为顺序变量的相关检验。 五、相关分析 研究现象之间是否存在某种依存关系,对具体有依存关系的现象探讨相关方向及相关程度。 1、单相关: 两个因素之间的相关关系叫单相关,即研究时只涉及一个自变量和一个因变量; 2、复相关 :三个或三个以上因素的相关关系叫复相关,即研究时涉及两个或两个以上的自变量和因变量相关; 3、偏相关:在某一现象与多种现象相关的场合,当假定其他变量不变时,其中两个变量之间的相关关系称为偏相关。 六、方差分析 使用条件:各样本须是相互独立的随机样本;各样本来自正态分布总体;各总体方差相等。 分类 1、单因素方差分析:一项试验只有一个影响因素,或者存在多个影响因素时,只分析一个因素与响应变量的关系 2、多因素有交互方差分析:一顼实验有多个影响因素,分析多个影响因素与响应变量的关系,同时考虑多个影响因素之间的关系 3、多因素无交互方差分析:分析多个影响因素与响应变量的关系,但是影响因素之间没有影响关系或忽略影响关系 4、协方差分祈:传统的方差分析存在明显的弊端,无法控制分析中存在的某些随机因素,使之影响了分祈结果的准确度。协方差分析主要是在排除了协变量的影响后再对修正后的主效应进行方差分析,是将线性回归与方差分析结合起来的一种分析方法, 七、回归分析 分类: 1、一元线性回归分析:只有一个自变量X与因变量Y有关,X与Y都必须是连续型变量,因变量y或其残差必须服从正态分布。 2、多元线性回归分析 使用条件:分析多个自变量与因变量Y的关系,X与Y都必须是连续型变量,因变量y或其残差必须服从正态分布 。 1)变呈筛选方式:选择最优回归方程的变里筛选法包括全横型法(CP法)、逐步回归法,向前引入法和向后剔除法 2)横型诊断方法: A 残差检验: 观测值与估计值的差值要艰从正态分布 B 强影响点判断:寻找方式一般分为标准误差法、Mahalanobis距离法 C 共线性诊断: 诊断方式:容忍度、方差扩大因子法(又称膨胀系数VIF)、特征根判定法、条件指针CI、方差比例 处理方法:增加样本容量或选取另外的回归如主成分回归、岭回归等 3、Logistic回归分析 线性回归模型要求因变量是连续的正态分布变里,且自变量和因变量呈线性关系,而Logistic回归模型对因变量的分布没有要求,一般用于因变量是离散时的情况 分类: Logistic回归模型有条件与非条件之分,条件Logistic回归模型和非条件Logistic回归模型的区别在于参数的估计是否用到了条件概率。 4、其他回归方法 非线性回归、有序回归、Probit回归、加权回归等 八、聚类分析 样本个体或指标变量按其具有的特性进行分类,寻找合理的度量事物相似性的统计量。 1、性质分类: Q型聚类分析:对样本进行分类处理,又称样本聚类分祈 使用距离系数作为统计量衡量相似度,如欧式距离、极端距离、绝对距离等 R型聚类分析:对指标进行分类处理,又称指标聚类分析 使用相似系数作为统计量衡量相似度,相关系数、列联系数等 2、方法分类: 1)系统聚类法: 适用于小样本的样本聚类或指标聚类,一般用系统聚类法来聚类指标,又称分层聚类 2)逐步聚类法 :适用于大样本的样本聚类 3)其他聚类法 :两步聚类、K均值聚类等 九、判别分析 1、判别分析:根据已掌握的一批分类明确的样品建立判别函数,使产生错判的事例最少,进而对给定的一个新样品,判断它来自哪个总体 2、与聚类分析区别 1)聚类分析可以对样本逬行分类,也可以对指标进行分类;而判别分析只能对样本 2)聚类分析事先不知道事物的类别,也不知道分几类;而判别分析必须事先知道事物的类别,也知道分几类 3)聚类分析不需要分类的历史资料,而直接对样本进行分类;而判别分析需要分类历史资料去建立判别函数,然后才能对样本进行分类 3、进行分类 : 1)Fisher判别分析法 : 以距离为判别准则来分类,即样本与哪个类的距离最短就分到哪一类, 适用于两类判别; 以概率为判别准则来分类,即样本属于哪一类的概率最大就分到哪一类,适用于 适用于多类判别。 2)BAYES判别分析法 : BAYES判别分析法比FISHER判别分析法更加完善和先进,它不仅能解决多类判别分析,而且分析时考虑了数据的分布状态,所以一般较多使用; 十、主成分分析 将彼此梠关的一组指标变适转化为彼此独立的一组新的指标变量,并用其中较少的几个新指标变量就能综合反应原多个指标变量中所包含的主要信息 。 十一、因子分析 一种旨在寻找隐藏在多变量数据中、无法直接观察到却影响或支配可测变量的潜在因子、并估计潜在因子对可测变量的影响程度以及潜在因子之间的相关性的一种多元统计分析方法 与主成分分析比较: 相同:都能够起到済理多个原始变量内在结构关系的作用 不同:主成分分析重在综合原始变适的信息.而因子分析重在解释原始变量间的关系,是比主成分分析更深入的一种多元统计方法 用途: 1)减少分析变量个数 2)通过对变量间相关关系探测,将原始变量进行分类 十二、时间序列分析 动态数据处理的统计方法,研究随机数据序列所遵从的统计规律,以用于解决实际问题;时间序列通常由4种要素组成:趋势、季节变动、循环波动和不规则波动。 主要方法:移动平均滤波与指数平滑法、ARIMA横型、量ARIMA横型、ARIMAX模型、向呈自回归横型、ARCH族模型 十三、生存分析 用来研究生存时间的分布规律以及生存时间和相关因索之间关系的一种统计分析方法 1、包含内容: 1)描述生存过程,即研究生存时间的分布规律 2)比较生存过程,即研究两组或多组生存时间的分布规律,并进行比较 3)分析危险因素,即研究危险因素对生存过程的影响 4)建立数学模型,即将生存时间与相关危险因素的依存关系用一个数学式子表示出来。 2、方法: 1)统计描述:包括求生存时间的分位数、中数生存期、平均数、生存函数的估计、判断生存时间的图示法,不对所分析的数据作出任何统计推断结论 2)非参数检验:检验分组变量各水平所对应的生存曲线是否一致,对生存时间的分布没有要求,并且检验危险因素对生存时间的影响。 A 乘积极限法(PL法) B 寿命表法(LT法) 3)半参数横型回归分析:在特定的假设之下,建立生存时间随多个危险因素变化的回归方程,这种方法的代表是Cox比例风险回归分析法 4)参数模型回归分析:已知生存时间服从特定的参数横型时,拟合相应的参数模型,更准确地分析确定变量之间的变化规律 十四、典型相关分析 相关分析一般分析两个变里之间的关系,而典型相关分析是分析两组变里(如3个学术能力指标与5个在校成绩表现指标)之间相关性的一种统计分析方法。 典型相关分析的基本思想和主成分分析的基本思想相似,它将一组变量与另一组变量之间单变量的多重线性相关性研究转化为对少数几对综合变量之间的简单线性相关性的研究,并且这少数几对变量所包含的线性相关性的信息几乎覆盖了原变量组所包含的全部相应信息。 十五、R0C分析 R0C曲线是根据一系列不同的二分类方式(分界值或决定阈).以真阳性率(灵敏度)为纵坐标,假阳性率(1-特异度)为横坐标绘制的曲线 用途: 1、R0C曲线能很容易地査出任意界限值时的对疾病的识别能力 用途 2、选择最佳的诊断界限值。R0C曲线越靠近左上角,试验的准确性就越高; 3、两种或两种以上不同诊断试验对疾病识别能力的比较,一股用R0C曲线下面积反映诊断系统的准确性。 十六、其他分析方法 多重响应分析、距离分祈、项目分祈、对应分祈、决策树分析、神经网络、系统方程、蒙特卡洛模拟等。三、数据分析方法有哪几种 数据分析方法的相关知识
数据分析方法有4种,分别是:
1、趋势分析,趋势分析一般用于核心指标的长期跟踪;
2、象限分析,可依据数据的不同,将各个比较主体划分到四个象限中;
3、对比分析,分为横向对比和纵向对比;
4、交叉分析,主要作用就是从多个维度细分数据。
四、论文常用数据分析方法
论文常用数据分析方法
论文常用数据分析方法,对好的论文分析研究方法应该从哪些方面展开,如何表达才能显得自己对该论文真的有所理解,应该看哪些书呢?下面我整理了论文常用数据分析方法,一起了解看看吧!
论文常用数据分析方法1
论文常用数据分析方法分类总结
1、 基本描述统计
频数分析是用于分析定类数据的选择频数和百分比分布。
描述分析用于描述定量数据的集中趋势、波动程度和分布形状。如要计算数据的平均值、中位数等,可使用描述分析。
分类汇总用于交叉研究,展示两个或更多变量的交叉信息,可将不同组别下的`数据进行汇总统计。
2、 信度分析
信度分析的方法主要有以下三种:Cronbach α信度系数法、折半信度法、重测信度法。
Cronbach α信度系数法为最常使用的方法,即通过Cronbach α信度系数测量测验或量表的信度是否达标。
折半信度是将所有量表题项分为两半,计算两部分各自的信度以及相关系数,进而估计整个量表的信度的测量方法。可在信度分析中选择使用折半系数或是Cronbach α系数。
重测信度是指同一批样本,在不同时间点做了两次相同的问题,然后计算两次回答的相关系数,通过相关系数去研究信度水平。
3、 效度分析
效度有很多种,可分为四种类型:内容效度、结构效度、区分效度、聚合效度。具体区别如下表所示:
论文常用数据分析方法2
4、 差异关系研究
T检验可分析X为定类数据,Y为定量数据之间的关系情况,针对T检验,X只能为2个类别。
当组别多于2组,且数据类型为X为定类数据,Y为定量数据,可使用方差分析。
如果要分析定类数据和定类数据之间的关系情况,可使用交叉卡方分析。
如果研究定类数据与定量数据关系情况,且数据不正态或者方差不齐时,可使用非参数检验。
5、 影响关系研究
相关分析用于研究定量数据之间的关系情况,可以分析包括是否有关系,以及关系紧密程度等。分析时可以不区分XY,但分析数据均要为定量数据。
回归分析通常指的是线性回归分析,一般可在相关分析后进行,用于研究影响关系情况,其中X通常为定量数据(也可以是定类数据,需要设置成哑变量),Y一定为定量数据。
回归分析通常分析Y只有一个,如果想研究多个自变量与多个因变量的影响关系情况,可选择路径分析。
以上就是关于数据分析方法相关问题的回答。希望能帮到你,如有更多相关问题,您也可以联系我们的客服进行咨询,客服也会为您讲解更多精彩的知识和内容。
推荐阅读: