rfm模型怎么做
大家好!今天让创意岭的小编来大家介绍下关于rfm模型怎么做的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。
开始之前先推荐一个非常厉害的Ai人工智能工具,一键生成原创文章、方案、文案、工作计划、工作报告、论文、代码、作文、做题和对话答疑等等
只需要输入关键词,就能返回你想要的内容,越精准,写出的就越详细,有微信小程序端、在线网页版、PC客户端
创意岭作为行业内优秀的企业,服务客户遍布全球各地,如需了解SEO相关业务请拨打电话175-8598-2043,或添加微信:1454722008
本文目录:
一、用户价值分层——基于RFM模型的研究分析
• R(Recency):消费间隔,最近一次距离上次消费的时间间隔
• F(Frequency):消费频次,一段时间(1个月/1年...)内的消费总次数
• M(Monetary):消费金额,一段时间(1个月/1年...)内的消费总金额
RFM模型是用户价值研究中的经典模型,基于近度(Recency),频度(Frequency)和额度(Monetory)这3个指标对用户进行聚类,找出具有潜在价值的用户, 从而辅助商业决策,提高营销效率。RFM作为一种数据驱动的客户细分技术,可帮助营销人员做出更明智的战略性决策,使营销人员能够快速识别用户并将其细分为同类群体,并针对性制定个性化的营销策略,提高用户的参与度和留存率。
RFM建模所需要的数据源是相对简单的,只用到了购买记录中的时间和金额这两个字段。我们基于交易数据中用户的最后一次的购买时间,购买的次数以和频率,以及平均/总消费额对每个用户计算了三个维度的标准分。然后我们对于三个维度赋予了不同的权重,再基于加权后的分值应用K-Means进行聚类,根据每种人群三个维度与平均值之间的高低关系,确定哪些是需要保持用户,哪些是需要挽留的用户,哪些是需要发展的用户等。在将这些客户圈出之后,便可以对不同客户群使用不同针对性地营销策略(引导,唤醒等),提高复购率与转化率。值得注意的是,三个维度的权重制定并没有统一的标准,比较通用的方法是用层次分析法(AHP),实际场景结合行业以及具体公司的特点进行因地制宜、因人而异的优化。
RFM因素:
• R值越高,顾客的有效期越近,对商家活动的响应越积极
• F值越高,顾客的消费频次越高,对商家的忠诚度就越高
• M值越高,顾客的消费能力越高,对商家贡献度就越高
• 想要提高复购率和留存率,需要时刻警惕R值
RFM分析:
• 谁是您最有价值的客户?
• 导致客户流失率增多的是哪些客户?
• 谁有潜力成为有价值的客户?
• 你的哪些客户可以保留?
• 您哪些客户最有可能对参与度活动做出响应?
• 谁是你不需要关注的无价值客户?
• 针对哪些客户制定哪种发展、保留、挽回策略?
通过RFM模型,可以帮助营销人员实现客户细分;衡量客户价值和客户利润创收能力;识别优质客户;指定个性化的沟通和营销服务;为更多的营销决策提供有力支持。
数据导入:使用python的pandas.read_csv导入样本数据。
缺失值校验:因数据为生产真实的交易数据,质量相对较高,缺失值较低。
极值校验:第一份样本数据获取的用户订单实付金额,其中会存在优惠或补差支付,同时因就餐人数不一致,产生的的订单消费也会存在较大的差异,造成极致波动、标准差值较大,因此需对金额进行处理,以人均消费额替代订单支付金额,可去掉10元以下、万元以上的交易订单。
获取RFM值:使用 groupby获取RFM值
获取RFM评分值:数据离散,pandas.cut
实验数据RFM分值占比
说明:F、M分布不均匀,极值差异大,经数据探查知晓该商户开通了企业团餐业务,企业会给员工发放补贴,导致员工呈现较高的消费频次,该类用户的消费行为绝大程度依赖于企业,在实际的RFM模型可踢出此类订单,降低此类人群的分值,其次数据中的M值为客户实付金额,该商户支持预定、会餐、大小桌,同一单的消费群体不同,或可使用人均消费总额作为M值。
RFM数据合并,建立R、F、M数据框:pandas+numpy
计算RFM综合分值:权重法
权重值主要赋值方法可分为主观赋权法、客观赋权法,如下:
主观赋权法:主要由专家经验得到权数,然后对指标进行综合评价。是一种结合性方法,易操作,存在一定主观性。常用方法:层次分析法AHP、权值因子判断表法、德尔菲法、模糊分析法、二项系数法、环比评分法、最小平方法、序关系分析法等。
客观赋权法:依据历史数据研究指标之间的相关关系或指标与评估结果的影响关系来综合评价。这是定量研究,无须考虑决策者主观意愿和业务经验,计算方法较为复杂。常用方法:主成分分析、因子分析、熵值法、变异系数法、均方差法、回归分析法等。
因样本数据分布不均匀,故手动赋权重值,去除部分极值。
结论:以近90天的消费活跃来看,用户消费频次集中在1-6次,呈现出极佳的复购率。可以针对消费一次的人群进行特征分析。比如针对人群的流动性,若流动人群占比较大,可进一步推广特色菜吸引客户,若周边人群占比较高,可基于复购人群的特征进行分析,同时平台可提供该类人群近期消费偏好,供商家参考,制定针对性方案。
了解RFM定义后,将3个指标作为坐标系的XYZ坐标轴,从空间上切割成8类,作为用户的价值分层,如下图:
用户价值分层说明:
上面我们已经计算得到各个用户的RFM分值,接下来要依据分值进行分类。
定义RFM 的分值等级
使用pyecharts绘制玫瑰图:
结论:商家顾客表现出来的忠诚度较高,但新客获取能力较低。但是单纯看分层占比,并没有实际意义,可以基于价值分层与其他特征关联分析进行精准投放。如下图(网络参考图,本期实验并未涉及其他特征)所示:
用户画像是基于用户信息与行为衍生出来的特征属性,用户的准入信息是用户的主观特征,是一种既定的事实,通过对用户行为的采集、研究,刻画出单个用户的特征。其意义在于基于某一事物对群里特征进行分类,有效的体现事物的合适人群;同时针对群里特征的偏爱、习惯研究,可以刻画出用户的需求,实现精准化营销。
用户画像的基础成分来源于用户的准入信息(会员注册时的登记信息),更多的特征数据来源于用户的各类行为,而RFM模型便是基于用户消费行为提炼出来的价值指标。通过对各个价值分层的群体特征研究,可以有效提升获客能力以及针对各类人群实现精准化营销。
市场和运营往往绞尽脑汁做活动、上新品、蹭热点、做营销,拓渠道,不断开发客户、做回访维系客户感情,除了少数运气好的之外,但大多效果寥寥,这是为何?
经验丰富的营销人员都知道“了解客户”和“客户细分”的重要性。营销人员不仅要着眼于创造更多的访问量和点击量以提高客户获取,还必须遵循从提高点击率(CTR)转变为提高保留,忠诚度并建立客户关系的新范式。与其将整个客户群作为一个整体进行分析,不如将其划分为同类群体,了解每个群体的特征,并使他们参与相关的活动,而不是仅根据客户年龄或地理位置进行客户细分。而RFM分析是市场营销人员分析客户行为的最流行、最简单、最有效的客户细分方法之一。
针对RFM分层用户制定相应的营销策略:
• 重要价值客户是您的最佳客户,他们是那些最新购买,最常购买,并且花费最多的消费者。提供VIP服务和个性化服务,奖励这些客户,他们可以成为新产品的早期采用者,并有助于提升您的品牌。
• 重要发展客户:近期客户,消费金额高,但平均频率不太高,忠诚度不高。提供会员或忠诚度计划或推荐相关产品以实现向上销售并帮助他们成为您的忠实拥护者和高价值客户。
• 重要保持客户:经常购买、花费巨大,但最近没有购买的客户。向他们发送个性化的重新激活活动以重新连接,并提供续订和有用的产品以鼓励再次购买。
• 重要挽回客户:曾经光顾,消费金额大,购买频率低,但最近没有光顾的顾客。设计召回策略,通过相关的促销活动或续订带回他们,并进行调查以找出问题所在,避免将其输给竞争对手。
•一般价值客户:最近购买,消费频次高但消费金额低的客户,需要努力提高其客单价,提供产品优惠以吸引他们。
• 一般发展客户:最近购买,但消费金额和频次都不高的客户。可提供免费试用以提高客户兴趣,提高其对品牌的满意度。
• 一般保持客户:很久未购买,消费频次虽高但金额不高的客户。可以提供积分制,各种优惠和打折服务,改变宣传方向和策略与他们重新联系,而采用公平对待方式是最佳。
• 一般挽留客户:RFM值都很低的客户。针对这类客户可以对其减少营销和服务预算或直接放弃。
此外,目前的RFM分析中,一般给与M值更高的权重,如果一般挽留客户与一般发展客户占据多数,说明公司的用户结构不是很合理,需要尽快采取措施进行优化。
二、如何分析RFM模型才能最有效,才能真正起到精细化运营的作用?
举一个互联网餐饮的例子~来证明如何分析RFM模型:
如何通过外卖订单数据,分析用户的基本属性;
用户的订单上都有订餐地址,通过对于订餐地址的统计,我们可以查询到不同条件组合下的用户分布,甚至能知道喜欢某道菜的用户都在哪里。类似的用户数据挖掘,还可以根据复购构成、复购用户跨平台使用情况、性别组成做更精细化的分析。值得注意的是,数据平台间的差异还是蛮大的,有利于针对不同平台做出不同的营销策略。
上面这些最基本的用户属性对于精细化运营还是不够的。 因为这些信息无法帮助你解决下面四个问题——
1.谁是我的重要价值客户,他们都有什么特点?
2.谁是我需要重点保持联系的客户,他们都有什么特点?
3.谁是我的重要发展客户,他们都有什么特点?
4.谁是我的重要挽留客户,他们都有什么特点?
2.如何通过RFM模型,为用户分群,实现精细化运营
RFM模型是一个被广泛使用的客户关系分析模型,主要以用户行为来区分客户,RFM分别是:
R = Recency 最近一次消费
F = Frequency 消费频率
M = Monetary 消费金额
需要详细了解以上三个指标定义的,百度会将维度再细分出5份,这样就能够细分出5x5x5=125类用户,再根据每类用户精准营销……显然125类用户已超出普通人脑的计算范畴了,更别说针对125类用户量体定制营销策略。实际运用上,我们只需要把每个唯独做一次两分即可,这样在3个维度上我们依然得到了8组用户。
重要价值客户(111):最近消费时间近、消费频次和消费金额都很高,必须是VIP啊!
重要保持客户(011):最近消费时间较远,但消费频次和金额都很高,说明这是个一段时间没来的忠实客户,我们需要主动和他保持联系。
重要发展客户(101):最近消费时间较近、消费金额高,但频次不高,忠诚度不高,很有潜力的用户,必须重点发展。
重要挽留客户(001):最近消费时间较远、消费频次不高,但消费金额高的用户,可能是将要流失或者已经要流失的用户,应当基于挽留措施。
3.如何在BDP个人版上建立RFM模型,帮助用户分群
这时候可能会有朋友问了,天啦,你这个三维模型,我没办法用BDP来建表格了。所以我们需要做的是将三维模型二维化,我们将R域切一块出来(即在近30天有复购的用户中做分析),压扁了就会看到。
上方的表示或许还是太学术了,简单的说
第一步:先挑出来近1个月的复购用户。
第二步:近1个月内复购用户的平均实付金额做纵轴。
第三步:近1个月内复购用户的购买次做横轴,生成表格。
第四步,你需要自己在这个表格上划红线。
横着的红线,代表着你认为来吃饭的客人平均每餐该花多少钱,我这里设定的值是25元,叫外卖25都没付到,对我而言是低消费金额(低M)用户。
竖着的红线,代表着你认为复购多少次的客人,是你的高频用户。外卖点餐流动率很大,一个用户每个月能在一家店点三次以上的菜,对我而言即是高频。
这样,BDP个人版上的RFM模型就建立好了。这个RFM模型在实操时有什么用呢?举个例子
比如对圈用户群发短信转化只有不到1%时,你可以用RFM做个分析,只选取R值高的用户(最近2周到最近一个月内消费的用户),转化率可以由1%提升到10%。
这也意味着,以往6元/订单将下降到0.6元/订单。掌柜们是愿意花600元给10000个用户发短信,得到100个订单,还是愿意花48元给800人发短信得到80个订单,相信大家一定会选后者。
而整体的RFM区分,则能够帮掌柜们针对不同的用户发不同的短信,短信的开头是用“好久不见”、还是用“恭喜你成为VIP”,就得看时重要保持客户还是重要价值用户了。只有能区分用户,才能走向精细化运营。
三、浅谈RFM模型
个人理解中的RFM是为了研究用户(买家)的一个算法模型,身为产品从业者的我们都喜欢谈目标用户,而何谓目标用户,我们可以简单把他们归结为付费用户,也就是为我们产品带来收入的人群。而PM一项很重要的职能就是分析数据,根据单一用户的购物行为对其分析不仅要浪费大量的人力资源,浪费时间且不可行,而且若缺乏一套具体的算法模型也难以脱离个人主观性。而研究用户,洞察人性却又是PM的主要工作内容,在产品迭代过程中,通常需要根据用户的属性进行归类,也就是通过分析数据,对用户进行归类,以便于在推送及转化过程中获得更大的收益。了解用户的行为感受是必不可少的职责,而RFM就是一种了解付费用户结构的基本方法。由于该模型设计到具体算法,网上大多数文献说得都比较复杂分散,而且存在重大歧义,如RFM中R值的概念Josh Bycer认为R值越大用户回购率越高,而真实情况未必如此。本文档主要是为了归纳汇总RFM模型的概念以及适用场景,以尽量直白的方式呈现给读者。奈何才疏学浅,许多地方未必正确,不足之处望指导。
R-Recency(近期)-最后一次购买是多久以前;R值越大,表示客户交易发生的日期越久,反之则表示客户交易发生的日期越近。
F-Frequency(频率)-购买频率;F值越大,表示客户交易越频繁,反之则表示客户交易不够活跃。
M-Monetary(消费)-设定时间段内客户的总消费金额;M值越大,表示客户价值越高,反之则表示客户价值越低 。 这是衡量客户价值最重要的指标。
1.谁是我的重要价值客户,他们都有什么特点?
2.谁是我需要重点保持联系的客户,他们都有什么特点?
3.谁是我的重要发展客户,他们都有什么特点?
4.谁是我的重要挽留客户,他们都有什么特点?
根据三维图表,以RFM为XYZ轴,1代表高,0代表低
1.重要价值客户(111):最近消费时间较短、消费频次和消费金额都较高。这是门店应该主要关注的VIP客户。
2.重要保持客户(011):最近消费时间较长,消费频次和消费金额都较高。说明这是个一段时间没来的忠实客户,我们需要主动和他保持联系。
3.重要发展客户(101):最近消费时间较短、消费金额高,但消费频次较低。忠诚度不高,很有潜力的用户,必须重点发展。
4.重要挽留客户(001):最近消费时间较长、消费频次不高,但消费金额高的用户,可能是将要流失或者已经要流失的用户,应当吸引客户回流。
RFM模型的最终目的是为了区别出有价值的用户在此基础上细分用户类型做到精准运营,实现效率最大化。RFM模型较为动态地显示了客户消费轮廓,这对个性化的沟通和服务提供了依据,根据用户群体、产品特性,产品的周期去改善三项指标的状况,从而为更多的营销决策提供支持。在RFM的分类基础上,去进行的基础维护运营,根据关键运营指标,选取重点需要优化的用户群体,进行差异化运营,从而刺激用户持续的消费、留存。RFM模型同时也能作为监控用户行为的有效工具,让管理者了解客户的行为从而反思现存的营销模式,为企业后续的发展方向做出战略性部署。
RFM模型主要用于电商领域,但是我们也可以替换RFM相关的字段使其适用于互联网产品。作为CRM一个模块的RFM应用范围以及应用之广此处便不再展开。
四、电子商务行业大数据分析采用的算法及模型有哪些?
第一、RFM模型
通过了解在网站有过购买行为的客户,通过分析客户的购买行为来描述客户的价值,就是时间、频率、金额等几个方面继续进行客户区分,通过这个模型进行的数据分析,网站可以区别自己各个级别的会员、铁牌会员、铜牌会员还是金牌会员就是这样区分出来的。同时对于一些长时间都没有购买行为的客户,可以对他们进行一些针对性的营销活动,激活这些休眠客户。使用RFM模型只要根据三个不同的变量进行分组就可以实现会员区分。
第二、RFM模型
这个应该是属于数据挖掘工具的一种,属于关联性分析的一种,就可以看出哪两种商品是有关联性的,例如衣服和裤子等搭配穿法,通过Apriori算法,就可以得出两个商品之间的关联系,这可以确定商品的陈列等因素,也可以对客户的购买经历进行组套销售。
第三、Spss分析
主要是针对营销活动中的精细化分析,让针对客户的营销活动更加有针对性,也可以对数据库当中的客户购买过的商品进行分析,例如哪些客户同时购买过这些商品,特别是针对现在电子商务的细分越来越精细,在精细化营销上做好分析,对于企业的营销效果有很大的好处。
第四、网站分析
访问量、页面停留等等数据,都是重要的流量指标,进行网站数据分析的时候,流量以及转化率也是衡量工作情况的方式之一,对通过这个指标来了解其他数据的变化也至关重要。
以上就是关于rfm模型怎么做相关问题的回答。希望能帮到你,如有更多相关问题,您也可以联系我们的客服进行咨询,客服也会为您讲解更多精彩的知识和内容。
推荐阅读: