HOME 首页
SERVICE 服务产品
XINMEITI 新媒体代运营
CASE 服务案例
NEWS 热点资讯
ABOUT 关于我们
CONTACT 联系我们
创意岭
让品牌有温度、有情感
专注品牌策划15年

    rfm计算方法(rfm值计算公式)

    发布时间:2023-04-03 18:35:00     稿源: 创意岭    阅读: 62        当前文章关键词排名出租

    大家好!今天让创意岭的小编来大家介绍下关于rfm计算方法的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。

    开始之前先推荐一个非常厉害的Ai人工智能工具,一键生成原创文章、方案、文案、工作计划、工作报告、论文、代码、作文、做题和对话答疑等等

    只需要输入关键词,就能返回你想要的内容,越精准,写出的就越详细,有微信小程序端、在线网页版、PC客户端

    官网:https://ai.de1919.com

    创意岭作为行业内优秀的企业,服务客户遍布全球各地,如需了解SEO相关业务请拨打电话175-8598-2043,或添加微信:1454722008

    本文目录:

    rfm计算方法(rfm值计算公式)

    一、体重和BMI指数,哪个更能反应身体健康状况?

    当然BMI更好吧。体重只包含了一个指数,而BMI好歹同时囊括了身高和体重,怎么说也比单看一项准确些。

    如果一个人身高150cm,体重60kg,明显是有些胖了。BMI的数值就能反映一个总体趋势,让人们监督自己身体是否存在过胖或过瘦的情况。rfm计算方法(rfm值计算公式)

    BMI全称为Body Mass Index,计算公式为体重(单位千克)÷身高2(单位米)。一般而言数值在18.5-24.9之间属于正常范围,根据人种的不同有所区分。亚洲人的上限就低一些,为23.9。中间还有最佳范围,为20-22。

    但BMI也有它的局限性。比如没有性别的区分,不能很好的反映肌肉含量。另外对于老人和儿童来说,结果都会有一定的偏差。rfm计算方法(rfm值计算公式)

    所以BMI只是一种粗略的估量方式。要真正想清楚自身是否健康,还要看体脂、围度等多个参数。比如本身就不胖的女孩儿,健身一段时间可能发现体重一点都没减下去。但如果测大腿围度等会发现小了一圈,视觉效果上更瘦了。因此这个时候光看体重和BMI是没有意义的。

    另外有团队提出一个更为科学的身体指标,叫做“相对脂肪质量指数”(RFM)。男性的计算公式为64-(20×身高/腰围),结果大于22.8为肥胖;女性为76-(20×身高/腰围),大于33.9为肥胖(单位都是米)。rfm计算方法(rfm值计算公式)

    相关研究人员说这种衡量方式能更好的看出一个人的脂肪情况,不再看体重。方法也很简单,仅需要一根皮尺。测量时从肚脐水平位置开始,放松呼气,不要有衣物遮挡。也许后面随着更进一步的普及,RFM会成为更流行的衡量健康指标。

    二、RFM模型分析与客户细分

    RFM模型分析与客户细分

    根据美国数据库营销研究所Arthur Hughes的研究,客户数据库中有三个神奇的要素,这三个要素构成了数据分析最好的指标:最近一次消费(Recency)、消费频率(Frequency)、消费金额(Monetary)。

    RFM模型:R(Recency)表示客户最近一次购买的时间有多远,F(Frequency)表示客户在最近一段时间内购买的次数,M (Monetary)表示客户在最近一段时间内购买的金额。一般原始数据为3个字段:客户ID、购买时间(日期格式)、购买金额,用数据挖掘软件处理,加权(考虑权重)得到RFM得分,进而可以进行客户细分,客户等级分类,Customer Level Value得分排序等,实现数据库营销!

    这里再次借用@数据挖掘与数据分析的RFM客户RFM分类图。

    本次分析用的的软件工具:IBM SPSS Statistics 19,IBM SPSS Modeler14.1,Tableau7.0,EXCEL和PPT

    因为RFM分析仅是项目的一个小部分分析,但也面临海量数据的处理能力,这一点对计算机的内存和硬盘容量都有要求。

    先说说对海量数据挖掘和数据处理的一点体会:(仅指个人电脑操作平台而言)

    一般我们拿到的数据都是压缩格式的文本文件,需要解压缩,都在G字节以上存储单位,一般最好在外置电源移动硬盘存储;如果客户不告知,你大概是不知道有多少记录和字段的;

    Modeler挖掘软件默认安装一般都需要与C盘进行数据交换,至少需要100G空间预留,否则读取数据过程中将造成空间不足

    海量数据处理要有耐心,等待30分钟以上运行出结果是常有的现象,特别是在进行抽样、合并数据、数据重构、神经网络建模过程中,要有韧性,否则差一分钟中断就悲剧了,呵呵;

    数据挖掘的准备阶段和数据预处理时间占整个项目的70%,我这里说如果是超大数据集可能时间要占到90%以上。一方面是处理费时,一方面可能就只能这台电脑处理,不能几台电脑同时操作;

    多带来不同,这是我一直强调的体验。所以海量数据需要用到抽样技术,用来查看数据和预操作,记住:有时候即使样本数据正常,也可能全部数据有问题。建议数据分隔符采用“|”存储;

    如何强调一个数据挖掘项目和挖掘工程师对行业的理解和业务的洞察都不为过,好的数据挖掘一定是市场导向的,当然也需要IT人员与市场人员有好的沟通机制;

    数据挖掘会面临数据字典和语义层含义理解,在MetaData元数据管理和理解上下功夫会事半功倍,否则等数据重构完成发现问题又要推倒重来,悲剧;

    每次海量大数据挖掘工作时都是我上微博最多的时侯,它真的没我算的快,只好上微博等它,哈哈!

    传统RFM分析转换为电信业务RFM分析主要思考:

    这里的RFM模型和进而细分客户仅是数据挖掘项目的一个小部分,假定我们拿到一个月的客户充值行为数据集(实际上有六个月的数据),我们们先用IBM Modeler软件构建一个分析流:

    数据结构完全满足RFM分析要求,一个月的数据就有3千万条交易记录!

    我们先用挖掘工具的RFM模型的RFM汇总节点和RFM分析节点产生R(Recency)、F(Frequency)、M (Monetary);

    接着我们采用RFM分析节点就完成了RFM模型基础数据重构和整理;

    现在我们得到了RFM模型的Recency_Score、Frequency_Score、Monetary_Score和RFM_Score;这里对RFM得分进行了五等分切割,采用100、10、1加权得到RFM得分表明了125个RFM魔方块。

    传统的RFM模型到此也就完成了,但125个细分市场太多啦无法针对性营销也需要识别客户特征和行为,有必要进一步细分客户群;

    另外:RFM模型其实仅仅是一种数据处理方法,采用数据重构技术同样可以完成,只是这里固化了RFM模块更简单直接,但我们可以采用RFM构建数据的方式不为RFM也可用该模块进行数据重构。

    我们可以将得到的数据导入到Tableau软件进行描述性分析:(数据挖掘软件在描述性和制表输出方面非常弱智,哈哈)

    我们也可以进行不同块的对比分析:均值分析、块类别分析等等

    这时候我们就可以看出Tableau可视化工具的方便性

    接下来,我们继续采用挖掘工具对R、F、M三个字段进行聚类分析,聚类分析主要采用:Kohonen、K-means和Two-step算法:

    这时候我们要考虑是直接用R(Recency)、F(Frequency)、M (Monetary)三个变量还是要进行变换,因为R、F、M三个字段的测量尺度不同最好对三个变量进行标准化,例如:Z得分(实际情况可以选择线性插值法,比较法,对标法等标准化)!另外一个考虑:就是R、F、M三个指标的权重该如何考虑,在现实营销中这三个指标重要性显然不同!

    有资料研究表明:对RFM各变量的指标权重问题,Hughes,Arthur认为RFM在衡量一个问题上的权重是一致的,因而并没有给予不同的划分。而Stone,Bob通过对信用卡的实证分析,认为各个指标的权重并不相同,应该给予频度最高,近度次之,值度最低的权重;

    这里我们采用加权方法:WR=2 WF=3 WM=5的简单加权法(实际情况需要专家或营销人员测定);具体选择哪种聚类方法和聚类数需要反复测试和评估,同时也要比较三种方法哪种方式更理想!

    下图是采用快速聚类的结果:

    以及kohonen神经算法的聚类结果:

    接下来我们要识别聚类结果的意义和类分析:这里我们可以采用C5.0规则来识别不同聚类的特征:

    其中Two-step两阶段聚类特征图:

    采用评估分析节点对C5.0规则的模型识别能力进行判断:

    结果还不错,我们可以分别选择三种聚类方法,或者选择一种更易解释的聚类结果,这里选择Kohonen的聚类结果将聚类字段写入数据集后,为方便我们将数据导入SPSS软件进行均值分析和输出到Excel软件!

    输出结果后将数据导入Excel,将R、F、M三个字段分类与该字段的均值进行比较,利用Excel软件的条件格式给出与均值比较的趋势!结合RFM模型魔方块的分类识别客户类型:通过RFM分析将客户群体划分成重要保持客户、重要发展客户、重要挽留客户、一般重要客户、一般客户、无价值客户等六个级别;(有可能某个级别不存在);

    另外一个考虑是针对R、F、M三个指标的标准化得分按聚类结果进行加权计算,然后进行综合得分排名,识别各个类别的客户价值水平;

    至此如果我们通过对RFM模型分析和进行的客户细分满意的话,可能分析就此结束!如果我们还有客户背景资料信息库,可以将聚类结果和RFM得分作为自变量进行其他数据挖掘建模工作!

    三、大家好!我是车行CRM部的工作人员现在主管RFM客户流失这个模块,请求高人指点,怎样计算客户流失率?

    第N月的用户流失率=1-第(N-6)月进站用户在第N、N-1、N-2、N-3、N-4、N-5月回站总数/第(N-6)月进站用户数×100%

    、例:某4S店2011年2月份客户流失率

    通俗的说就是:2010年8月份进站的用户数(非进站台次,因有可能一个用户一个月会几次进站),在2010年9、10、11、12以及2011年1、2月是否有回站,只要有回就算回站了,不管回来几次,这样就没有流失了。假设2010年8月4S进站的用户数为100个,后六个月这100个用户回来88个,那回站率为88%,1-回站率等于流失率为12%,所以该4S店客户流失率为12%。

    四、常用的分析方法及模型有哪些?

    1、RFM模型

    RFM分析是客户关系分析中一种简单实用客户分析方法,将最近一次消费、消费频率、消费金额这三个要素构成了数据分析最好的指标,衡量客户价值和客户创利能力。

    RFM分析也就是通过这个三个指标对客户进行观察和分类,针对不同的特征的客户进行相应的营销策略。

    R——最后交易距离当前天数(Recency)

    F——累计交易次数(Frequency)

    M——累计交易金额(Monetary)

    在这三个制约条件下,我们把M值大,也就是贡献金额最大的客户作为“ 重要客户 ”,其余则为“ 一般客户 "和” 流失客户 “,基于此,我们产生了8种不同的客户类型:

    重要价值客户 :复购率高、购买频次高、花费金额大的客户,是价值最大的用户。

    重要保持客户 :买的多、买的贵但是不常买的客户,我们要重点保持;

    重要发展客户 :经常买、花费大但是购买频次不多的客户,我们要发展其多购买;

    重要挽留客户 :愿意花钱但是不常买、购买频次不多的客户,我们要重点挽留;

    一般价值客户 :复购率高、购买频次高,但是花费金额小的客户,属于一般价值;

    一般保持客户 :买的多但是不常买、花钱不多,属于一般保持客户;

    一般发展客户 :经常买,但是买不多、花钱也不多,属于一般发展客户;

    一般挽留客户 :不愿花钱、不常买、购买频次不高,最没有价值的客户;

    下面是我用 FineBI 做的RFM模型可视化仪表板,可以通过RFM模型对客户的终生价值做一个合理的预估,基于一个理想的客户特征来衡量现实中客户价值的高低,通过此类分析,定位最有可能成为品牌忠诚客户的群体,让我们把主要精力放在最有价值的用户身上。

    波士顿模型最初是一个时间管理模型,按照紧急、不紧急、重要、不重要排列组合分成四个象限,以此便于对时间进行有效的管理。

    运用在客户分析中,也就是利用销售额和利润这两个重要指标分为四个象限,对我们的客户进行分组。我们将这两个维度作为横纵坐标轴分为四个象限,将产品或者服务分为下面四种类型:

    明星类 :增长率高、占有率高,代表着十分成功的产品,是主打的明星产品;

    金牛类 :增长率低、占有率高,已经占据了市场但是没有发展空间的产品,属于现金牛产品;

    问题类 :增长率高、占有率低,说明用户需求高,但是本身产品有问题,需要改进优化;

    瘦狗类 :增长率低、占有率低,市场不认可的失败产品,需要尽快去除;

    我们如此分类的目的正是要根据波士顿矩阵,将一些没有发展前景和市场潜力的产品尽快淘汰掉,保证明星产品和现金牛产品的份额,从而搭配好产品或者业务的整个市场布局。

    FineBI制作的波士顿模型实际使用:

    如图所示,每个销售大区与每个销售年份下的客户分布,通过筛选数据,我们得到我们想要的客户信息。而波士顿矩阵则是一个非常有力的工具,可以帮助我们将杂乱无序的东西组块整理,在使用矩阵的的时候,尽量选取纵向和横向毫无关联要素来分析,这样才能发挥矩阵分块整理的作用。

    我们知道并不是所有的顾客都具备相同的价值,如果企业能够专注于那些可以带来最大未来利益的客户,就可以实现更好的运营。所以企业必须识别出这些客户,CLV是对客户未来利润的有效预测,它还有另外一个名字,叫做LTV (life time value)。

    这里需要特别说明的是,CLV考虑了完整的客户生命周期,包含客户获取和客户流失,也就是它计算的不只是眼前顾客已经产生的价值,还预测了未来价值。

    CLV的计算公式有非常多,有的会非常复杂,主要在流失率这个环节和影响因素就相当多,也有会加上投入成本,价值变化率和利率变化等等。

    比较实用简单的是这种:

    那对于CLV的应用,可以从以下两个模型来看,将企业的最优客户与不值得投入的客户区分出来:

    帕累托原则,又称二八原则,是关于效率与分配的判断方法。帕累托法则是指在任何大系统中,约80%的结果是由该系统中约20%的变量产生的。应用在企业中,就是80%的利润来自于20%的项目或重要客户。

    模型的解释:当一个企业80%利润来自于20%的客户总数时,这个企业客户群体是健康且趋于稳固的。 当一个企业80%利润来自大于20%的客户总数时,企业需要增加大客户的数量。当一个企业80%利润来自小于20%的客户群时,企业的基础客户群需要拓展与增加。

    模型的实际使用,某商场品牌商的销售额。

    一共10家客户,5家客户(50%)提供了80%的销售额,这就说明需要增加大品牌客户数量。

    带来大量销售额的客户必须认真对待和维护,如果客户数量大,尤其需要列出重点客户重点跟进,把有限的精力放在创造利润大的客户上。

    5、漏斗模型

    漏斗模型本质是分解和量化,为了方便大家理解,这里以营销漏斗模型举例:

    也就是说营销的环节指的是从获取用户到最终转化成购买这整个流程中的一个个子环节,相邻环节的转化率则就是指用数据指标来量化每一个步骤的表现。

    所以整个漏斗模型就是先将一个完整的购买流程拆分成一个个步骤,然后用转化率来衡量每一个步骤的表现,最后通过异常的数据指标找出有问题的环节,然后解决该环节的问题,最终达到提升整体购买转化率的目的,所以漏斗模型的核心思想可以归为分解和量化。

    比如分析电商的转化,我们要做的就是监控每个层级上的用户转化,寻找每个层级的可优化点。对于没有按照流程操作的用户,专门绘制他们的转化模型,缩短路径提升用户体验。

    PEST,也就是政治(Politics)、经济(Economy)、社会(Society)、技术(Technology),能从各个方面把握宏观环境的现状及变化趋势,主要用户行业分析。

    宏观环境又称一般环境,是指影响一切行业和企业的各种宏观力量。

    对宏观环境因素作分析时,由于不同行业和企业有其自身特点和经营需要,分析的具体内容会有差异,但一般都应对政治、经济、技术、社会,这四大类影响企业的主要外部环境因素进行分析。

    政治环境:政治体制、经济体制、财政政策、税收政策、产业政策、投资政策等。

    社会环境:人口规模、性别比例、年龄结构、生活力式、购买习惯、城市特点等。

    技术环境:折旧和报废速度、技术更新速度、技术传播速度、技术商品化速度等。

    经济环境:GDP 及增长率、进出口总额及增长率、利率、汇率、通货膨胀率、消费价格指数、居民可支配收入、失业率、劳动生产率等。

    5W2H,即为什么(Why)、什么事(What)、谁(Who)、什么时候(When)、什么地方(Where)、如何做(How)、什么价格(How much),主要用于用户行为分析、业务问题专题分析、营销活动等。

    该分析方法又称为七何分析法,是一个非常简单、方便又实用的工具,以用户购买行为为例:

    Why:用户为什么要买?产品的吸引点在哪里?

    What:产品提供的功能是什么?

    Who:用户群体是什么?这个群体的特点是什么?

    When:购买频次是多少?

    Where:产品在哪里最受欢迎?在哪里卖出去?

    How:用户怎么购买?购买方式什么?

    How much:用户购买的成本是多少?时间成本是多少?

    SWOT分析法也叫态势分析法,S (strengths)是优势、W (weaknesses)是劣势,O (opportunities)是机会、T (threats)是威胁或风险。

    SWOT分析法是用来确定企业自身的内部优势、劣势和外部的机会和威胁等,通过调查列举出来,并依照矩阵形式排列,然后用系统分析的思想,把各种因素相互匹配起来加以分析。

    运用这种方法,可以对研究对象所处的情景进行全面、系统、准确的研究,从而将公司的战略与公司内部资源、外部环境有机地结合起来。

    4P即产品(Product)、价格(Price)、渠道(Place)、推广(Promotion),在营销领域,这种以市场为导向的营销组合理论,被企业应用最普遍。

    可以说企业的一切营销动作都是在围绕着4P理论进行,也就是将:产品、价格、渠道、推广。通过将四者的结合、协调发展,从而提高企业的市场份额,达到最终获利的目的。

    产品:从市场营销的角度来看,产品是指能够提供给市场,被入们使用和消费并满足人们某种需要的任何东西,包括有形产品、服务、人员、组织、观念或它们的组合。

    价格:是指顾客购买产品时的价格,包括基本价格、折扣价格、支付期限等。影响定价的主要因素有三个:需求、成本与竞争。

    渠道:是指产品从生产企业流转到用户手上全过程中所经历的各个环节。

    促销:是指企业通过销售行为的改变来刺激用户消费,以短期的行为(比如让利、买一送一,营销现场气氛等等)促成消费的增长,吸引其他品牌的用户或导致提前消费来促进销售的增长。广告、宣传推广、人员推销、销售促进是一个机构促销组合的四大要素。

    逻辑树又称问题树、演绎树或分解树等。它是把一个已知问题当成“主干”,然后开始考虑这个问题和哪些相关问题有关,也就是“分支”。逻辑树能保证解决问题的过程的完整性,它能将工作细分为便于操作的任务,确定各部分的优先顺序,明确地把责任落实到个人。

    逻辑树的使用必须遵循以下三个原则:

    要素化:把相同的问题总结归纳成要素。

    框架化:将各个要素组织成框架。遵守不重不漏的原则。

    关联化:框架内的各要素保持必要的相互关系,简单而不独立。

    AARRR模型是所有运营人员都要了解的一个数据模型,从整个用户生命周期入手,包括获取(Acquisition)、激活(Activition)、留存(Retention)、变现(Revenue)和传播(Refer)。

    每个环节分别对应生命周期的5个重要过程,即从获取用户,到提升活跃度,提升留存率,并获取收入,直至最后形成病毒式传播。

    以上就是关于rfm计算方法相关问题的回答。希望能帮到你,如有更多相关问题,您也可以联系我们的客服进行咨询,客服也会为您讲解更多精彩的知识和内容。


    推荐阅读:

    colourful怎么读英语(colourful怎么读英语怎么读)

    colourful英语怎么说读音

    渲染方式surfaceview和Tex

    农场大门入口景观设计(农场大门入口景观设计效果图)

    外墙涂料品牌排行榜(外墙涂料品牌排行榜前十名三棵树颜色)