数据可视化分析报告(数据可视化分析报告案例)
大家好!今天让创意岭的小编来大家介绍下关于数据可视化分析报告的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。
开始之前先推荐一个非常厉害的Ai人工智能工具,一键生成原创文章、方案、文案、工作计划、工作报告、论文、代码、作文、做题和对话答疑等等
只需要输入关键词,就能返回你想要的内容,越精准,写出的就越详细,有微信小程序端、在线网页版、PC客户端
官网:https://ai.de1919.com,如需咨询相关业务请拨打175-8598-2043,或微信:1454722008
本文目录:
一、数据可视化是什么啊?怎么做?
何为数据可视化?
这里主要是指工作场景中的数据可视化(海报类、信息图不在范围内)。
数据可视化就是承接数据分析之后的数据展示,包括图表设计、动效组合,形成二维图表,三维视图、联动钻取,搭配成大屏……
数据可视化的功能主要体现在两个方面:一是数据展示;二是业务分析。数据展示很好理解,就是将已知的数据或数据分析结果通过可视化图表的方式进行展示,形成报表、看板、dashboard、甚至配合现在流行的大屏展示技术,数据展示的方式也越来越为人所接受和欢迎。业务分析就是在看到图表、dashboard、大屏之后,将所分析的度量和数据有效地转化为有商业价值的见解,使其能够为基于事实所做的决策提供支持。
数据可视化的工具
对于数据可视化,有诸多工具,如:
1、图表类插件:ECharts、Highcharts、D3js等功能都十分强大。
2、数据报表类:Excel、金蝶、FineReport等,对于日常的报表制作,易学实用。
3、可视化BI类:比如cognos、tableau等,更直接地针对业务分析。
以上,前两者是纯粹的可视化图标,后两者涵盖从数据采集、分析、管理、挖掘、可视化在内的一系列复杂数据处理。
如何实现可靠的数据可视化?
数据可视化最终还要回归到“阅读者”,通过传递有指向性的数据,找出问题所在,制定正确决策。所以数据的价值不在于被看到,而在于看到之后所引起的思考和行动。
这里,企业内数据还不同于普通的应用数据,它们大多不是通过算法程序直接产生价值应用于用户,而是通过合理的展示和分析,再经应用者或管理者思考和判断,最后采取行动,从而发挥价值。
1、谁是可视化的受益者
无论你在做一份传统的报表,汇报的PPT还是其他,首先需要搞清楚这是给谁看的,他需要了解哪些事项,关注那些指标,在决策过程中会如何利用你展示的信息和数据,一句话概括就是搞清楚数据分析工作的目标,这一张报表是用来做什么的。后续的数据分析工作和分析报告里所要呈现的全部内容,之后都是要紧紧围绕着这个目标主题而服务的。
2、梳理指标体系
数据可视化是要讲繁杂的各条数据,梳理成指标,围绕每个业务财务、销售、供应链、生产等形成指标体系,最后通过可视化的方式展现,比如回款率、收益效率….
可以说,数据分析工作是否成功,大体就在指标的梳理。这个工作需要数据中心的人员或者BI组的人员深入业务一线去调研需求,拉来数据,建好数仓….
【指标体系分享】
如何针对业务场景做数据分析-零售业管理指标
数据化管理的指标体系大全(一),店铺与销售
数据化管理的指标体系大全(二),商品、电商、战略决策
分析生产和库存,靠这一套指标就够了!
将数据可视化与业务方案结合起来
二、数据可视化的作用与意义
数据可视化的意义是帮助人更好的分析数据,信息的质量很大程度上依赖于其表达方式。对数字罗列所组成的数据中所包含的意义进行分析,使分析结果可视化。其实数据可视化的本质就是视觉对话。数据可视化将技术与艺术完美结合,借助图形化的手段,清晰有效地传达与沟通信息。一方面,数据赋予可视化以价值;另一方面,可视化增加数据的灵性,两者相辅相成,帮助企业从信息中提取知识、从知识中收获价值。
数据可视化的优势
1、传递速度快
人脑对视觉信息的处理要比书面信息块10倍。使用图表来总结复杂的数据,可以确保对关系的理解要比那些混乱的报告或电子表格更快。
2、数据显示的多维性
在可视化的分析下,数据将每一维的值分类、排序、组合和显示,这样就可以看到表示对象或事件的数据的多个属性或变量。
3、更直观的展示信息
大数据可视化报告使我们能够用一些简短的图形就能体现那些复杂信息,甚至单个图形也能做到。决策者可以轻松地解释各种不同的数据源。丰富但有意义的图形有助于让忙碌的主管和业务伙伴了解问题和未决的计划。
4、大脑记忆能力的限制。
实际上我们在观察物体的时候,我们大脑和计算机一样有长期的记忆(memory 硬盘)和短期的记忆(cache 内存)。只有我们让要记下文字,诗歌,物体,一遍一遍的在短期记忆了出现之后, 它们才可能进入长期记忆。
三、如何使用Tableau 进行数据可视化分析
链接:http://pan.baidu.com/s/1BWBtFMYeQazJWUYSmHi5fw
Python&Tableau:商业数据分析与可视化。Tableau的程序很容易上手,各公司可以用它将大量数据拖放到数字“画布”上,转眼间就能创建好各种图表。这一软件的理念是,界面上的数据越容易操控,公司对自己在所在业务领域里的所作所为到底是正确还是错误,就能了解得越透彻。
快速分析:在数分钟内完成数据连接和可视化。Tableau 比现有的其他解决方案快 10 到 100 倍。大数据,任何数据:无论是电子表格、数据库还是 Hadoop 和云服务,任何数据都可以轻松探索。
课程目录:
前置课程-Python在咨询、金融、四大等领域的应用以及效率提升
Python基础知识
Python入门:基于Anaconda与基于Excel的Python安装和界面
简单的数学计算
Python数据分析-时间序列2-数据操作与绘图
Python数据分析-时间序列3-时间序列分解
......
四、数据可视化的优点
数据可视化的优点:
1.加强商业信息传递效率
人眼通过视觉和图像比文本和数字更容易吸收和掌握信息。尽管如此,为高级管理人员编制的大多数商业智能报告通常都填充有静态表格和图表,这些表格和图表无法为查看它的人提供生动的信息。相比之下,数据可视化使用户能够接收有关运营和业务条件的大量信息。数据可视化允许决策者查看多维数据集之间的连接,并通过使用热图,地理图和其他丰富的图形表示提供解释数据的新方法。
2.快速访问相关业务见解
通过数据可视化,业务组织可以提高他们在需要时查找所需信息的能力,并且比其他公司更高效地完成这些工作。根据最近进行的一项研究,使用可视化数据发现工具的组织,业务经理比仅依靠托管报告和仪表板的人更及时找到信息的可能性高28%。此外,使用可视化数据发现产品的公司中, 48%的商业智能用户能够在没有IT员工帮助的情况下找到所需信息。
3.更好地理解运营和业务活动
数据可视化的一个重要优势,是它使用户能够更有效地查看在操作条件和业务性能之间发生的连接。在当今竞争激烈的商业环境中,在数据中找到这些相关性从未如此重要。例如,通过提供业务和运营动态的多角度视图,数据可视化允许高级领导团队了解,最近远程客户呼叫中心的首次联系解决率如何?从而显着影响客户满意度。
4.快速识别最新趋势
在这个时代,公司能够收集的有关客户和市场状况的数据,可以为企业领导者提供对新收入和商业机会的洞察力–他们可以从大量的数据中发现机会。使用数据可视化,决策者能够更快地掌握跨多个数据集的客户行为和市场条件的变化。
5.准确的客户情感分析
利用数据可视化,公司可以更深入地了解客户情绪和其他数据,从而揭示他们向客户推出新服务的新机遇。这些有用的见解使企业能够采取新的商机,以保持领先于竞争对手。
扩展资料:
数据可视化技术包含以下几个基本概念:
①数据空间:是由n维属性和m个元素组成的数据集所构成的多维信息空间;
②数据开发:是指利用一定的算法和工具对数据进行定量的推演和计算;
③数据分析:指对多维数据进行切片、块、旋转等动作剖析数据,从而能多角度多侧面观察数据;
④数据可视化:是指将大型数据集中的数据以图形图像形式表示,并利用数据分析和开发工具发现其中未知信息的处理过程。
数据可视化已经提出了许多方法,这些方法根据其可视化的原理不同可以划分为基于几何的技术、面向像素技术、基于图标的技术、基于层次的技术、基于图像的技术和分布式技术等等。
参考资料:百度百科-数据可视化(数据视觉表现形式的科技研究)
以上就是关于数据可视化分析报告相关问题的回答。希望能帮到你,如有更多相关问题,您也可以联系我们的客服进行咨询,客服也会为您讲解更多精彩的知识和内容。
推荐阅读: