对数据的共同理解——数据治理为数据提供了一致的视图和通用术语,同时各个业务部门保留了适当的灵活性。
提高数据质量——数据治理创建了一个确保数据准确性、完整性和一致性的计划。
数据地图——数据治理提供了一种高级能力来了解与关键实体相关的所有数据的位置,这对于就像GPS可以代表物理景观并帮助人们在未知景观中找到方向一样,数据治理使数据资产变得可用并且更容易与业务成果联系起来。
每个客户和其他业务实体的360 度视图——数据治理建立了一个框架,以便组织可以就关键业务实体的“单一版本真相”达成一致,并在实体和业务活动之间建立适当的一致性级别。
一致的合规性— 数据治理提供了一个平台来满足政府法规的要求,例如数据安全法、个人信息保护法欧盟通用数据保护条例 (GDPR)和行业要求,例如 PCI DSS(支付卡行业数据安全标准)。
改进数据管理——数据治理将人的维度带入高度自动化、数据驱动的世界。它建立了数据管理的行为准则和最佳实践,确保传统数据和技术领域(包括法律、安全和合规等领域)以外的问题和需求得到一致解决。
数据治理平台
大家好!今天让创意岭的小编来大家介绍下关于数据治理平台的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。
开始之前先推荐一个非常厉害的Ai人工智能工具,一键生成原创文章、方案、文案、工作计划、工作报告、论文、代码、作文、做题和对话答疑等等
只需要输入关键词,就能返回你想要的内容,越精准,写出的就越详细,有微信小程序端、在线网页版、PC客户端
官网:https://ai.de1919.com,如需咨询相关业务请拨打175-8598-2043,或微信:1454722008
本文目录:
一、国内有哪些公司在做企业数据治理系统的?路过的了朋友可以介绍一下?
国内有哪些公司在做企业数据治理系统的?路过的了朋友可以介绍一下
如今,不少企业都想拥有属于自己企业或产品的手机APP,但其中最困扰企业主的问题就是:开发一款手机APP到底需要多少钱?
简单点来说,要视手机APP的需求及质量而言,价位一般在几千到十几万左右,更高端的价格更高。
今天,我们就来详细分析一下这个问题,请继续往下看吧。
一、APP开发款式分为固定款和定制款,两者的价格均不相同
固定款:是指直接套用已有的、现成的APP固定模板,报价是固定的,所需要的功能也是固定的,缺点就是客户拿不到源代码,也不能根据企业需求进行定制,由于源代码是封装的,如果企业以后想进行功能升级或系统维护的话,也不能够实现,只能重新开发一个新的软件。
固定款的APP开发时间短,约2~3日的时间即可完成,费用大约在几千到几万之间。
定制款:定制款是指APP的功能全部重新开发,过程比较繁琐,需要美工、策划、APP开发(前台/客户端/手机端)、后台程序员等工种协同完成,大型的、功能复杂的APP甚至需要数十人的团队。
由于APP的功能和设计都是定制的,因此价格会高些。定制款的开发时间与开发价格是成正比的,开发时间长,大约在两三个月甚至不定的周期里才能完成,而费用大概在几万甚至十几万左右。
因此,想要知道开发一款手机APP需要花费多少钱,企业主首先必须把APP的详细需求和功能告知APP开发公司,开发公司才能报出一个合理的价格。
二、手机APP平台不同,制作成本也不一样
现在市面上流行的手机APP制作平台主要有两种一般包括两种系统:安卓系统(Android)和苹果系统(IOS)。
一般来说,制作苹果系统的手机APP软件费用要比安卓平台的贵一些,因为苹果公司对苹果平台的封闭性和手机APP开发语言Objective-C的难度,都让APP开发者加大了苹果系统手机APP开发的难度。
三、APP制作成本包含参与人员的工资
通常情况下,开发一款APP需要产品经理、客户端工程师、后端工程师和UI设计师各一名,这已经是制作手机APP应用软件比较精简的配置了,所以这些参与人员的工资也是包含在APP制作成本当中的。这些工作人员的月薪加起来可能都会超过4、5万元。
四、APP开发公司的所在地
需要注意的是,同样实力的APP开发公司,在不同的城市也会导致APP的成本费用高一些,如在北京、深圳和上海等地的开发公司开发成本费用就会比较高,因为当地开发人员的薪资和其他支出相对更高。
二、如何有效地进行数据挖掘和分析,数据治理平台哪家好?
可以利用数据中台有效进行数据挖掘和分析。数据中台建设的基础其实还是数据仓库和数据中心,但和传统的数据仓库和数据中心相比,确实有一些过人之处。此处以袋鼠云数据中台为例,浅析数据中台策略的几个过人之处:
1、 数据汇聚,承上启下。区别于传统的数据治理平台,数据中台策略的基本理念是,将所有的数据汇聚到数据中台,以后的每个数据应用(无论是指标和分析类的,还是画像类和大数据类的)统统从数据中台获取数据,如果数据中台没有,那么数据中台就负责把数据找来,如果数据中台找不来或者从外部购买,就说明当前真没有这个数据,数据应用也就无从展开。
2、 纵观大局,推动全局。数据业务在企业中应当是一个完整业务,是一个亟需提高定位的业务,是企业的战略业务。所以数据中台策略应当对应企业的数据战略,并提供更有力的支撑,而不是仅仅停留在把数据采集,把数据清洗,把数据算出来。所以,数据中台建设,需要详实了解企业的数据情况,数据需求以及构建数据业务的推动蓝图。上述内容应当通过相互衔接的七个数据服务进行完整的构建以及推动。
3、 技术升级、应用便捷。大数据平台在很长一段时间,甚至直至现在都还是以开源产品为主流的状况,开源产品使用费力,配置繁琐,导致大数据开发门槛高,数据应用受到严重阻碍,甚至在很多地方一直把大数据技术平台和传统的数仓做区别对待,认为大数据产品的特点是流式计算和处理非结构化数据。其实大数据产品如果能够降低使用门槛的话,会迅速替代传统数仓的技术产品。传统数仓无论在海量数据处理能力,节点扩展能力,实时计算能力,软件购买和维护成本等诸多方面都无法与当前的大数据平台进行抗衡。目前业内比较典型的就是阿里云数加平台,数加平台基本让数据开发者能够像使用传统数据库一样的使用大数据平台了,所有操作方式都是通过可视化界面进行,大部分的开发都是通过SQL语句来实现。
袋鼠云数据中台建设与策略已经脱离了一个单纯的产品概念范畴,更多的是关注于企业的整体数据化建设工作,这也是数据治理平台的趋势所向。
三、什么是数据治理?
什么是数据治理?
数据治理是流程、角色、政策、标准和指标的集合,可确保有效和高效地使用信息,使组织能够实现其目标。它建立了流程和职责,以确保整个企业或组织中使用的数据的质量和安全性。数据治理定义了谁可以对什么数据、在什么情况下、使用什么方法采取什么行动。
精心设计的数据治理策略对于任何处理大数据的组织来说都是基础,它将解释业务如何从一致、通用的流程和职责中受益。业务驱动因素强调在数据治理策略中需要谨慎控制哪些数据以及从这项工作中获得的预期收益。此策略将成为数据治理框架的基础。
例如,如果数据治理策略的业务驱动因素是确保医疗保健相关数据的隐私,则需要在患者数据流经业务时对其进行安全管理。将定义保留要求(例如,谁更改了哪些信息以及何时更改的历史记录)以确保符合相关政府要求,例如GDPR。
数据治理可确保明确定义与数据相关的角色,并在整个企业内就责任和问责制达成一致。精心规划的数据治理框架涵盖战略、战术和运营角色和职责。
数据治理不是什么
数据治理经常与其他密切相关的术语和概念混淆,包括数据管理和主数据管理。
数据治理不是数据管理
数据管理是指对组织全数据生命周期需求的管理。数据治理是数据管理的核心组成部分,将其他九个学科联系在一起,例如数据质量、参考和主数据管理、数据安全、数据库操作、元数据管理和数据仓库。
数据治理不是主数据管理
主数据管理 (MDM) 侧重于识别组织的关键实体,然后提高这些数据的质量。它确保拥有有关客户、供应商、服务提供者等关键实体的最完整和准确的可用信息。由于这些实体在整个组织中共享,因此主数据管理是将这些实体的碎片化视图整合到一个视图中——超越数据治理的纪律。
但是,没有适当的治理就没有成功的 MDM。例如,数据治理计划将定义主数据模型(客户、产品等的定义是什么),详细说明数据的保留策略,并定义数据创作、数据管理和访问的角色和职责.
数据治理不是数据管理
数据治理可确保为合适的人员分配合适的数据职责。数据管理是指为确保数据准确、可控且易于被相关方发现和处理的必要活动。数据治理主要是关于战略、角色、组织和政策,而数据管理则是关于执行和运营。
数据管理员负责数据资产,确保实际数据与数据治理计划一致,与其他数据资产相关联,并在数据质量、合规性或安全性方面受到控制。
数据治理的好处
有效的数据治理策略可为组织带来许多好处,包括:
四、什么是数据治理?如何进行数据治理?
数据治理(Data Governance)是组织中涉及数据使用的一整套管理行为。由企业数据治理部门发起并推行,关于如何制定和实施针对整个企业内部数据的商业应用和技术管理的一系列政策和流程。通俗来讲,数据治理就是由企业及企业内部门主导,由工具做支撑,配合相关政策和流程实现对数据的管理,最终实现数据价值的最大化过程。
数据治理是一个长期过程,主要内容涉及数据的盘点、元数据管理、数据的规范建模、数据质量、数据服务等,企业想要进行数据治理选择一个好的工具无疑是非常重要的,远光大数据智能开发平台(YG-EDT)经历诸多项目实战的打磨,满足不同的数据治理场景,通过数据赋能业务,支撑业务创新发展,帮助企业深入挖掘数据价值,助力夯实数字化基础。
以上就是关于数据治理平台相关问题的回答。希望能帮到你,如有更多相关问题,您也可以联系我们的客服进行咨询,客服也会为您讲解更多精彩的知识和内容。
推荐阅读: