数据分析报告中,适合做对比分析(数据分析报告中,适合做对比分析的图标类型是)
大家好!今天让创意岭的小编来大家介绍下关于数据分析报告中,适合做对比分析的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。
开始之前先推荐一个非常厉害的Ai人工智能工具,一键生成原创文章、方案、文案、工作计划、工作报告、论文、代码、作文、做题和对话答疑等等
只需要输入关键词,就能返回你想要的内容,越精准,写出的就越详细,有微信小程序端、在线网页版、PC客户端
创意岭作为行业内优秀企业,服务客户遍布全国,网络营销相关业务请拨打175-8598-2043,或微信:1454722008
本文目录:
一、怎么写好一份数据分析报告
数据分析报告价值不言而喻,麦肯锡、罗兰贝格或者波士顿等著名咨询公司,仅仅凭借报告就可以赚几十万或者上百万的收入。但如此有价值的数据分析报告,并不是人人都可以做的出来的,接下来我会结合自己的一些经历,对数据分析报告进行一次大剖析。
1)数据分析报告怎么制作出来的?
无论是数据,还是现在炒的很热的大数据,分析流程都是一样的。完整的数据分析流程包括以下部分:商业问题理解,数据梳理,数据清洗,数据分析,制作报告,解决问题。
这是一个闭环、不断优化的过程,只要最终没有充分解决问题,这个流程就会不停迭代循环下去。
具体每一个环节如何理解呢?
第一、商业问题的理解:这个模块是为了明确分析思路及目标的,我们报告目的是什么,需要用什么样的分析思路,就是在这个模块进行思考。
第二、数据梳理:这个阶段是数据准备工作阶段,主要思考的问题是,需要什么数据源,具体数据源要什么样的字段以及思考采集方法。
第三、数据清洗:所谓的数据清洗,就是数据的采集、整理及加工,最终得到适合分析的数据形式。其中数据整理和加工包括方面和角度很多,譬如去重、处理缺失值、异常值处理等。
第四、数据分析:包括两个部分,第一部分就是基础统计分析,譬如对比分析,交叉分析,时间序列分析等。而第二部分则是建模挖掘,当然这个部分得看具体需要。如果需要,则应进行相应的建模算法操作,从而得出相关结论。
第五、制作报告:这里就是将得到的相关数据分析结果进行可视化操作,最终输出的形式可以多种多样,但是常见的还是以PPT、Dashboard为主,并且这里还要写明具体结论。
第六、解决问题:任何的报告并不是自嗨,还需要解决实际问题,这样报告的价值才能凸显,譬如了解消费者,指导精准营销。
2)数据分析报告的种类
数据报告一般而言分为四种:市场/行业分析、用户画像洞察、竞品研究以及具体经营或业务问题分析。
1.市场/行业分析:对某个市场或者行业进行现状分析,并对未来趋势进行预测。具体包括宏观环境,典型企业、大事件分析、发展趋势等。
2.用户画像洞察:对目标用户进行洞察,包括基本属性、行为属性以及态度属性等。
3.竞品监测:对同类产品或者品牌现状进行分析,包括市场占比,功能诉求、用户满意度分析等。
4.具体经营或业务问题分析:对某个细致业务问题或经营问题进行专题分析,譬如XX投放效果营销分析。
3)报告数据来源
报告数据来源有很多,最常见的包括以下几种情况:
1.网页爬虫数据,譬如微博评论数据,大众点评评论数据。
2.互联网公开数据,譬如统计局数据,各大协会数据。
3.市场调研数据,这块是根据自己报告目的,通过相关调查问卷来得到某些数据样本,从而分析得到有价值的信息。
4.企业内部数据,主要是以客户数据为主,多见于具体经营或业务问题分析报告中。
5.运营商数据,如果和运营商有合作,可以得到这方面的数据,价值高,但价格也贵。
4)数据分析报告的学习建议
想要制作好一份数据分析报告的话,除了上述所说,还需要你平时多看一些咨询、数据报告,学习人家的框架、数据分析角度以及可视化成果等,然后多总结,多模仿。当你对数据分析报告的套路烂熟于心的时候,恭喜你,你就小有成就了。
这里推荐一些网址:
1.199IT互联网数据中心:http://www.199it.com/
2.艾瑞网:http://report.iresearch.cn/
3. 易观智库:https://www.analysys.cn/
4. 阿里研究院:http://www.aliresearch.com/
5. CBNDATA:http://www.cbndata.com/report
另外,你还需要多关注麦肯锡、波士顿、罗兰贝格、埃森哲、尼尔森等公司的微信公众号及发布的报告观点。
这就是我想对你说的,希望对你有所收获。
二、数据分析模型和方法有哪些?
1、分类分析数据分析法
在数据分析中,如果将数据进行分类就能够更好的分析。分类分析是将一些未知类别的部分放进我们已经分好类别中的其中某一类;或者将对一些数据进行分析,把这些数据归纳到接近这一程度的类别,并按接近这一程度对观测对象给出合理的分类。这样才能够更好的进行分析数据。
2、对比分析数据分析方法
很多数据分析也是经常使用对比分析数据分析方法。对比分析法通常是把两个相互有联系的数据进行比较,从数量上展示和说明研究对象在某一标准的数量进行比较,从中发现其他的差异,以及各种关系是否协调。
3、相关分析数据分析法
相关分析数据分析法也是一种比较常见数据分析方法,相关分析是指研究变量之间相互关系的一类分析方法。按是否区别自变量和因变量为标准一般分为两类:一类是明确自变量和因变量的关系;另一类是不区分因果关系,只研究变量之间是否相关,相关方向和密切程度的分析方法。
4、综合分析数据分析法
层次分析法,是一种实用的多目标或多方案的决策方法。由于他在处理复杂的决策问题上的实用性和有效性,而层次分析数据分析法在世界范围得到广泛的应用。它的应用已遍及经济计划和管理,能源政策和分配,行为科学、军事指挥、运输、农业、教育、医疗和环境等多领域。
三、2022年1月的财务报表可以和2021年12月的数据做比较分析吗
可以做数据比较分析的。
将2022年1月的财务报表与去年12月份的财务情况进行对比分析,可以得到1月相对去年12月的财务变化情况,所以是可以进行对比分析的。
财务报表是反映企业或预算单位一定时期资金、利润状况的会计报表。我国财务报表的种类、格式、编报要求,均由统一的会计制度作出规定,要求企业定期编报。目前,国营工业企业在报告期末应分别编报资金平衡表、专用基金及专用拨款表,基建借款及专项借款表等资金报表,以及利润表、产品销售利润明细表等利润报表。国营商业企业要报送资金平衡表、经营情况表及专用资金表等。
四、数据分析报告有哪些要点?
1、确定报告受众和分析目的
无论写什么类型的数据分析报告,都要先搞清楚报告给谁看,不同的受众对一份数据分析报告的期待是不一样的。
2、框架、思路清晰
作为数据分析结论输出最重要的部分,一份优秀的数据分析报告要能够准确体现你的分析思路,让读者充分接收你的信息,所以在制作报告时,框架和思路要清晰。
这里的框架不单指报告的行文逻辑,更多是指数据分析过程的框架,比方说我们拿到一个分析问题,不可能一下子就找到问题背后的原因,需要利用各种手段将问题拆解分析,直到得出最终结论,这时候就可能会用到我们常提到的MECE、PEST、AAARRR等分析框架
3、保障数据准确
写一份报告,获取和整理数据往往会占据 6成以上的时间。要规划数据协调相关部门组织数据采集、导出处理数据,最后才是写报告,如果数据不准确,那分析的结果也没有意义,报告也就失去价值,因此在收集整合数据时需要注意数据是否靠谱,验证数据口径和数据范围。
4、让图表传达更加直接
图与表之间,图与图之间的联系如何阐述,反映出的问题如何表达,这些都是在做数据分析图表就要弄明白的。很多细心的领导及专门会针对你的数据分析以及结论来提问,因为现状和未来是他们最关心的。所以数据图表展现也要体现你的分析思路,而不单单是为了展示数据。
以上就是关于数据分析报告中,适合做对比分析相关问题的回答。希望能帮到你,如有更多相关问题,您也可以联系我们的客服进行咨询,客服也会为您讲解更多精彩的知识和内容。
推荐阅读:
快手小店公示30天才能关闭吗(快手小店公示30天才能关闭吗怎么设置)