数据分析的六种基本分析方法(数据处理最基本的四种方法)
大家好!今天让创意岭的小编来大家介绍下关于数据分析的六种基本分析方法的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。
开始之前先推荐一个非常厉害的Ai人工智能工具,一键生成原创文章、方案、文案、工作计划、工作报告、论文、代码、作文、做题和对话答疑等等
只需要输入关键词,就能返回你想要的内容,越精准,写出的就越详细,有微信小程序端、在线网页版、PC客户端
官网:https://ai.de1919.com,如需咨询相关业务请拨打175-8598-2043,或微信:1454722008
本文目录:
一、数据分析的基本方法有哪些
数据分析的三个常用方法:
1. 数据趋势分析
趋势分析一般而言,适用于产品核心指标的长期跟踪,比如,点击率,GMV,活跃用户数等。做出简单的数据趋势图,并不算是趋势分析,趋势分析更多的是需要明确数据的变化,以及对变化原因进行分析。
趋势分析,最好的产出是比值。在趋势分析的时候需要明确几个概念:环比,同比,定基比。环比是指,是本期统计数据与上期比较,例如2019年2月份与2019年1月份相比较,环比可以知道最近的变化趋势,但是会有些季节性差异。为了消除季节差异,于是有了同比的概念,例如2019年2月份和2018年2月份进行比较。定基比更好理解,就是和某个基点进行比较,比如2018年1月作为基点,定基比则为2019年2月和2018年1月进行比较。
比如:2019年2月份某APP月活跃用户数我2000万,相比1月份,环比增加2%,相比去年2月份,同比增长20%。趋势分析另一个核心目的则是对趋势做出解释,对于趋势线中明显的拐点,发生了什么事情要给出合理的解释,无论是外部原因还是内部原因。
2. 数据对比分析
数据的趋势变化独立的看,其实很多情况下并不能说明问题,比如如果一个企业盈利增长10%,我们并无法判断这个企业的好坏,如果这个企业所处行业的其他企业普遍为负增长,则5%很多,如果行业其他企业增长平均为50%,则这是一个很差的数据。
对比分析,就是给孤立的数据一个合理的参考系,否则孤立的数据毫无意义。在此我向大家推荐一个大数据技术交流圈: 658558542 突破技术瓶颈,提升思维能力 。
一般而言,对比的数据是数据的基本面,比如行业的情况,全站的情况等。有的时候,在产品迭代测试的时候,为了增加说服力,会人为的设置对比的基准。也就是A/B test。
比较试验最关键的是A/B两组只保持单一变量,其他条件保持一致。比如测试首页改版的效果,就需要保持A/B两组用户质量保持相同,上线时间保持相同,来源渠道相同等。只有这样才能得到比较有说服力的数据。
3. 数据细分分析
在得到一些初步结论的时候,需要进一步地细拆,因为在一些综合指标的使用过程中,会抹杀一些关键的数据细节,而指标本身的变化,也需要分析变化产生的原因。这里的细分一定要进行多维度的细拆。常见的拆分方法包括:
分时 :不同时间短数据是否有变化。
分渠道 :不同来源的流量或者产品是否有变化。
分用户 :新注册用户和老用户相比是否有差异,高等级用户和低等级用户相比是否有差异。
分地区 :不同地区的数据是否有变化。
组成拆分 :比如搜索由搜索词组成,可以拆分不同搜索词;店铺流量由不用店铺产生,可以分拆不同的店铺。
细分分析是一个非常重要的手段,多问一些为什么,才是得到结论的关键,而一步一步拆分,就是在不断问为什么的过程。
二、懂视生活
1、分组分析法。分组分析法是为了对比,把总体中不同性质的对象分开,以便进一步了解内在的数据关系,因此分组法必须和对比法结合运用。
2、结构分析法。结构分析法指分析总体内的各部分与总体之间进行对比的分析方法及总体内各部分占总体的比例,属于相对指标。一般某部分的比例越大,说明其重要程度越高,对总体的影响越大。
3、平均分析法。平均分析法是运用计算平均数的方法来反映总体在一定时间、地点条件下某一数量特征的一般水平。
4、漏斗分析法。漏斗分析法是结合对比分析法分组分析,比较同一环节优化前后、不同用户群、同行类似的转化率通过漏斗各环节业务数据的比较,能够直观地发现和说明问题所在。
三、常见的数据分析方法有哪些?
常见的数据分析方法有哪些?
1.趋势分析
当有大量数据时,我们希望更快,更方便地从数据中查找数据信息,这时我们需要使用图形功能。所谓的图形功能就是用EXCEl或其他绘图工具来绘制图形。
趋势分析通常用于长期跟踪核心指标,例如点击率,GMV和活跃用户数。通常,只制作一个简单的数据趋势图,但并不是分析数据趋势图。它必须像上面一样。数据具有那些趋势变化,无论是周期性的,是否存在拐点以及分析背后的原因,还是内部的或外部的。趋势分析的最佳输出是比率,有环比,同比和固定基数比。例如,2017年4月的GDP比3月增加了多少,这是环比关系,该环比关系反映了近期趋势的变化,但具有季节性影响。为了消除季节性因素的影响,引入了同比数据,例如:2017年4月的GDP与2016年4月相比增长了多少,这是同比数据。更好地理解固定基准比率,即固定某个基准点,例如,以2017年1月的数据为基准点,固定基准比率是2017年5月数据与该数据2017年1月之间的比较。
2.对比分析
水平对比度:水平对比度是与自己进行比较。最常见的数据指标是需要与目标值进行比较,以了解我们是否已完成目标;与上个月相比,要了解我们环比的增长情况。
纵向对比:简单来说,就是与其他对比。我们必须与竞争对手进行比较以了解我们在市场上的份额和地位。
许多人可能会说比较分析听起来很简单。让我举一个例子。有一个电子商务公司的登录页面。昨天的PV是5000。您如何看待此类数据?您不会有任何感觉。如果此签到页面的平均PV为10,000,则意味着昨天有一个主要问题。如果签到页面的平均PV为2000,则昨天有一个跳跃。数据只能通过比较才有意义。
3.象限分析
根据不同的数据,每个比较对象分为4个象限。如果将IQ和EQ划分,则可以将其划分为两个维度和四个象限,每个人都有自己的象限。一般来说,智商保证一个人的下限,情商提高一个人的上限。
说一个象限分析方法的例子,在实际工作中使用过:通常,p2p产品的注册用户由第三方渠道主导。如果您可以根据流量来源的质量和数量划分四个象限,然后选择一个固定的时间点,比较每个渠道的流量成本效果,则该质量可以用作保留的总金额的维度为标准。对于高质量和高数量的通道,继续增加引入高质量和低数量的通道,低质量和低数量的通过,低质量和高数量的尝试策略和要求,例如象限分析可以让我们比较和分析时间以获得非常直观和快速的结果。
4.交叉分析
比较分析包括水平和垂直比较。如果要同时比较水平和垂直方向,则可以使用交叉分析方法。交叉分析方法是从多个维度交叉显示数据,并从多个角度执行组合分析。
分析应用程序数据时,通常分为iOS和Android。
交叉分析的主要功能是从多个维度细分数据并找到最相关的维度,以探究数据更改的原因。
四、数据分析的几种常用方法21-10-27
几种常见的数据分析分析方法:
1.周期性分析(基础分析)
What :主要是从日常杂乱的数据中,发现周期性出现的现象,而从避免或改善问题的发生。常见的两种周期:自然周期和生命周期。
需要注意的点:虽然周期性分析主要针对时间序列,但不全是,例如公众号的文章阅读走势不仅和日期(工作日或周末)相关,也和文章类型相关。
例如:销售中3,6,9,12月,由于绩效考核出现的峰值
重点节假日对和交付的影响
产品销售的季节性影响(例如北方下半年的采暖产品,入夏空调的销售旺季等)
How: 自然后期的时间维度,根据分析的需求,可从年(同环比,业绩达成、和行业趋势对比),月(淡旺季、销售进度、生产预测),周(一般较少),日(工作日,非工作日的差异分析),时(时间分布,工作时段,上下班高峰,晚上,主要和大众消费行为分析相关)进行展开
生命周期一种常见的分析就“商品生命周期”,商品销量随上市时间的变化,通过时间轴+指标走势组合出来的。这种分析对快消品或者产品迭代速度很快的商品(典型如手机)是比较重要的,可以用于监控产品的市场表现,对照市场活动可以量化活动效果以及产品线的经营情况,如持续跟进,则可针对性的提出产品上市的建议。
2.矩阵分析(重要分析方法)
矩阵分析是数据分析中非常重要的分析方法。主要解决分析领域的一个非常致命的核心问题:“到底指标是多少,才算好”。
平均数是一个非常常用的数据维度,但是单一维度,并不能充分评价好坏。例如考核销售,如果只考核业务销售业绩,那么业务人员一定会倾向卖利润低的引流产品。那种利润高,价格高,不容易卖的利润型产品就没人卖了,最后销售越多,公司的利润反而下降了。这个时候通过两个维度:销售规模和销售利润,构建交叉矩阵,就能将业务业绩进行更有效的区分。
举个简单的例子,一个销售团队,10名销售一个月内开发的客户数量,产生的总业绩用矩阵分析法进行分析(具体数据略):
第一步:先对客户数量、业绩求平均值
第二步:利用平均值,对每个销售人员的客户数量、业绩进行分类
第三步:区分出多客户+高业绩,少客户+高业绩,多客户+低业绩,少客户+低业绩四类
矩阵分析把关键业务目标拆分为两个维度,每个维度进行高低分类,进而可以对目标进行更加立体的描述。维度高低分类多采用 平均值作为参考 值。
注意:有两个场景,是不适合用矩阵分析法:
一:有极大/极小值影响了平均值的时候,一般出现极大/极小值的时候,可以用: 分层分析法 。
二:两个指标高度相关的时候,例如用户消费金额与消费频次,两个指标天生高度相关,此时数据分布会集中在某一个或两个区域,矩阵分析法的业务解读能力接近0,可采用 相关分析法
3.结构分析
What: 结构分析是将分析的目标,向下分解,主要用于发现问题。
例如销售分析,可以按照区域—省—市 一级级的分解,分解之后可以更好的看出影响销售业绩的影响因素在哪个位置。
结构分析可以有多个维度,取决于我们需要分析的方向。例如还是销售分析,可以从产品构成进行拆解,也可用从业务形态拆解
How:如何进行结构分析?
第一步:定出要分析的关键指标(一般是业绩、用户量、DAU、利润等等)
第二步:了解关键指标的构成方式(比如业绩,由哪些用户、哪些商品、哪些渠道组成)
第三步:跟踪关键指标的走势,了解指标结构变化情况
第四步:在关键指标出现明显上升/下降的时候,找到变化最大的结构分类,分析问题
注意:结构分析的不足
结构分析法是一种:知其然,不知其所以然的方法。只适用于发现问题,不能解答问题
4.分层分析
What: 分层分析,是为了应对 平均值失效 的场景。典型的平均值失效例如平均工资,很多人都被“代表”。这个时候需要把收入群体分成几类,例如土豪,普通百姓,穷光蛋等,后面进行分析时就比较清楚了。业内也有一些不同的叫法,比如应用于商品的,叫ABC分类,应用于用户的,叫用户分层,应用于业务的,叫二八法则。本质都是一回事。
How:如何进行分层分析
1.明确分层对象和分层指标
例如:想区分用户消费力,分层对象就是:用户,分层指标就是:消费金额
想区分商品销售额,分层对象就是:商品,分层指标就是:销售金额
想区分部销售额,分层对象就是:分部,分层指标就是:销售收入
2.查看数据,确认是否需要分层。分层是应对平均值失效的情况的,存在极值影响的情况,则适合分层。
3.设定分层的层级。最好的解决办法是老板拍板,其次可以用“二八原则”,以上述销售业绩分层为例,可以先从高到低排序,然后把累积业绩占80%的人选出来,作为“第1层级(优等)”,其他的归为“第2层级(次等)”。有时如果颗粒度不够,也可以用“二四六八十”法则”。
如何应用分层
分层的最大作用是帮我们看清楚:到底谁是主力 ,谁是吊车尾。从而指导业务,从人海战术向精兵简政思考。
根据分层的结果找出差距,进而提出(假设)差异背后可能的原因,通过其它方式进行
应用 :客户分析,目前系统中客户超5000个,为了更好的了解客户结构,可以通过分层分析的方法对这5000个客户进行分层,分层的方式通过年销售规模,可以按照累计规模排序,一般采用4-6个层级,每个层级可以给一个标签。例如王者客户,腰部客户,mini客户等。分层后,便可以针对性的进行分析,例如客户层级的销售占比,变动,各层级客户的销售构成,结合其它方法就可以有较全面的分析
5.漏斗分析(待补充)
6.指标拆解(待补充)
7.相关性分析(待补充)
What :两个(或多个)因素之间的关系。例如员工人数与销售额,市场推广与销售业绩,天气和销售表现等
很多因素我们直观的感觉到之间有联系,相互影响,但具体的关系是什么,如何产品影响的,可以通相关性分析来量化。
例如,客户开拓中拜访客户的次数和客户成交是否有关系?
拜访次数多,表明客户也感兴趣,所以成功几率大
拜访这么多,客户还不成交,成功几率不大
客户成交和拜访关系不太大,主要看你是否能打动他
How :两种联系:直接关系,间接关系
直接关系 :整体指标与部分指标的关系——结构分析,例如销售业绩与各中心的业绩
主指标与子指标的关系——拆解分析,例如总销售规模和客户数量与客户销售规模
前后步骤间的关系——漏斗分析:例如销售目标和项目覆盖率,储备率,签约等因素间的关系
联系中,指标之间出现一致性的变化,基本是正常,如果出现相反的变动,则需要关注,这可能是问题所在
间接关系 :要素之间没有直接的联系,但存在逻辑上的连接。例如推广多了,知名度上市,进而销售额上升。
由于关系非显性,需要通过处理进行评价,常用的就是散点图和excel中的相关系数法
在明确相关性后,就可以通过改变其中一个变量来影响和控制另一个变量的发展。
注意:相关性分析也存在很大的局限。主要体现在相关性并不等同因果性。例如十年前你在院子里种了一颗树,你发现树每天的高度和中国近十年GDP的增速高度相关,然后这两者间并没有什么实质性的联系。此次相关性分析过程中一定注意要找到关联的逻辑自洽。
8.标签分析(待补充)
9.
以上就是关于数据分析的六种基本分析方法相关问题的回答。希望能帮到你,如有更多相关问题,您也可以联系我们的客服进行咨询,客服也会为您讲解更多精彩的知识和内容。
推荐阅读: