杭州视觉智能企业1562(杭州视觉科技有限公司)
大家好!今天让创意岭的小编来大家介绍下关于杭州视觉智能企业1562的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。
开始之前先推荐一个非常厉害的Ai人工智能工具,一键生成原创文章、方案、文案、工作计划、工作报告、论文、代码、作文、做题和对话答疑等等
只需要输入关键词,就能返回你想要的内容,越精准,写出的就越详细,有微信小程序端、在线网页版、PC客户端
创意岭作为行业内优秀企业,服务客户遍布全国,相关业务请拨打175-8598-2043,或微信:1454722008
本文目录:
一、专注人工智能视觉领域的企业有哪些?
现在人工智能倍受市场的关注,虽然在技术上的准入门槛非常高,但是除了BAT外仍有不少企业在快速崛起
商汤科技:现在被称为人工智能的融资巨兽,估值达到300亿
旷视科技:资历较深的一家视觉领域人工智能企业,体量仅次于商汤,主要做人脸识别方向的解决方案。
云从科技:广州的人工智能企业,发展十分迅猛主要针对安防和金融领域。
码隆科技:和上面三家不同,码隆专注于比人脸识别更复杂的商品识别,在零售、医疗、安检质检、时尚服装行业的应用落地实力十分突出。
二、人工智能,未来竞争压力大不大?
人工智能是未来的大趋势。机器翻译,智能控制,专家系统,机器人学,语言和图像理解,遗传编程机器人工厂,自动程序设计,航天应用,庞大的信息处理,储存与管理,执行化合生命体无法执行的或复杂或规模庞大的任务等等。竞争压力是会有的,这恰恰体现了人工智能专业的热门,所以学习人工智能方面的专业是很不错的。虽然这些不是人人都能干的,但是对于我国乃至世界来讲人才也是非常多的,所以竞争压力肯定会有的。必须的不断学习,探索新知。
拓展补充:
对于中国而言,人工智能的发展是一个历史性的战略机遇,对缓解未来人口老龄化压力、应对可持续发展挑战以及促进经济结构转型升级至关重要。
虽然“人工智能”(AI)已经成为一个几乎人人皆知的概念,但对人工智能的定义还没有达成普遍共识。传统的人工智能发展思路是研究人类如何产生智能,然后让机器学习人的思考方式和行为。现代人工智能概念的提出者约翰·麦卡锡认为,机器不一定需要像人一样思考才能获得智能,重点是让机器能够解决人脑所能解决的问题。
第四次工业革命正在来临,而人工智能已经从科幻逐步走入现实。从1956年人工智能这个概念被首次提出以来,人工智能的发展几经沉浮。随着核心算法的突破、计算能力的迅速提高、以及海量互联网数据的支撑,人工智能终于在21世纪的第二个十年里迎来质的飞跃,成为全球瞩目的科技焦点。自从2016年AIphaGo战胜李世石之后,全球对于人工智能发展的兴奋与担忧交织难分。
即使如此,世界各国已经认识到人工智能是未来国家之间竞争的关键赛场,因而纷纷开始部署人工智能发展战略,以期占领新一轮科技革命的历史高点。对于中国而言,人工智能的发展是一个历史性的战略机遇,对缓解未来人口老龄化压力、应对可持续发展挑战以及促进经济结构转型升级至关重要。
本文从科技产出与人才投入、产业发展和市场应用、发展战略和政策环境等方面描绘中国人工智能的发展面貌。
科技产出与人才投入
1. 论文产出 : 中国人工智能论文总量和高被引论文数量都是世界第一。中国在人工智能领域论文的全球占比从 1997 年 4.26% 增长至2017 年的 27.68%,遥遥领先其他国家。高校是人工智能论文产出的绝对主力,在全球论文产出百强机构中,87家为高校。中国顶尖高校的人工智能论文产出在全球范围内都表现得十分出众。不仅如此,中国的高被引论文呈现出快速增长的趋势,并在 2013 年超过美国成为世界第一。但在全球企业论文产出排行中,中国只有国家电网公司的排名进入全球前 20 位。从学科分布看,计算机科学、工程和自动控制系统是人工智能论文分布最多的学科。国际合作对人工智能论文产出的影响十分明显,高水平论文里中国通过国际合作而发表的占比高达 42.64% 。
2. 专利申请 : 中国专利数量略微领先于美国和日本,国家电网表现突出。中国已经成为全球人工智能专利布局最多的国家,数量略微领先于美国和日本,而中美日三国占全球总体专利公开数量的 74%。全球专利申请主要集中在语音识别、图像识别、机器人以及机器学习等细分方向。中国人工智能专利持有数量前 30 名的机构中,科研院所与大学和企业的表现相当,其技术发明数量占比分别为 52% 和48%。企业中的主要专利权人表现差异巨大,尤其是中国国家电网近五年的人工智能相关技术发展迅速,在国内布局专利技术量远高于其他专利权人,而且在全球企业排名中位列第四。中国的专利技术集中在数据处理系统和数字信息传输等领域,其中图像处理分析的相关专利占总发明件数的 16%。电力工程也已成为中国人工智能专利布局的重要领域。
3. 人才投入 : 中国人工智能人才总量居世界第二,但是杰出人才占比偏低。截至 2017 年,中国的人工智能人才拥有量达到 18232 人,占世界总量的 8.9%,仅次于美国(13.9% ) 。高校和科研机构是人工智能人才的主要载体,清华大学和中国科学院系统成为全球人工智能人才投入量最大的机构。然而,按高 H 因子(又称 H 指数,用于评价科学家的科研绩效)衡量的中国杰出人才只有 977 人,不及美国的五分之一,排名世界第六。企业人才投入量相对较少,高强度人才投入的企业集中在美国,中国仅有华为一家企业进入全球前 20。中国人工智能人才集中在东部和中部,但个别西部城市如西安和成都也表现十分突出。国际人工智能人才集中在机器学习、数据挖掘和模式识别等领域,而中国的人工智能人才研究领域则比较分散。
产业发展和市场应用
1. 企业规模 : 中国人工智能企业数量为全球第二,北京是全球人工智能企业最集中的城市。截至2018 年 6 月,全球共监测到人工智能企业总数达 4925 家,其中美国人工智能企业数 2028 家,位列全球第一。中国( 不含港澳台地区 )人工智能企业总数 1011 家,位列全球第二,其后分别是英国、加拿大和印度(图 1):
从城市尺度看(图 2),全球人工智能企业数量排名前 20 的城市中,美国占 9 个,中国占 4 个,加拿大占 3 个,英国、德国、法国和以色列各占 1 个。其中,北京成为全球人工智能企业数量最多的城市,其次是旧金山和伦敦。上海、深圳和杭州的人工智能企业数量也进入全球前 20。
从成立时间看(图 3),中国人工智能创业企业的涌现集中在2012-2016 年,在 2015 年达到顶峰,新增初创企业数量达到 228 家。从2016 年开始,创业企业的增速有所放缓。
中国人工智能企业的平均年龄为 5.5 年。其中,北京、上海和天津等地初创企业云集,企业平均年龄相较于全国平均水平更年轻,平均年龄在 5.5 年以下。山东和辽宁等地老牌工业机器人和自动化企业转型较多,企业年龄相对较大。
人工智能的应用技术主要包括语音类技术 ( 包括语音识别、语音合成等 )、视觉类技术 ( 包括生物识别、图像识别、视频识别等 ) 和自然语言处理类技术 ( 包括机器翻译、文本挖掘、情感分析等 )。将基础硬件考虑在内,国内外人工智能企业应用技术分布如图 4 所示。相比国外,中国人工智能企业的应用技术更集中于视觉和语音,而基础硬件占比偏小。
人工智能在行业应用上包括智能机器人、智能驾驶、无人机、AR/VR、大数据及数据服务、各类垂直领域应用(本文中定义为“AI+")等。国内外人工智能企业的行业应用分布如图 5 所示。可以看出,相比于国外,国内企业更看重智能机器人、无人机和智能驾驶等终端产品的市场,而国外企业更注重 AI在各类垂直行业的应用。
2. 风险投资 : 中国已成为全球人工智能投融资规模最大的国家。自 2013 年以来,全球和中国人工智能行业投融资规模都呈上涨趋势(图 6)。2017 年全球人工智能投融资总规模达 395 亿美元,融资事件1208 笔,其中中国的投融资总额达到 277.1 亿美元,融资事件 369 笔。中国 AI 企业融资总额占全球融资总额的 70%,融资笔数达 31%。
根据 2013 年到 2018 年第一季度全球的投融资数据,中国已在人工智能融资规模上超越美国成为全球最“吸金”国家,但是在投融资笔数上,美国仍然在全球处于领先地位。
发展战略和政策环境
1. 国际比较 : 各国人工智能战略与政策各有着重点。 2013年以来,美、德、英、法、日、中等国都纷纷出台了人工智能战略和政策。各国人工智能战略各有侧重,美国重视人工智能对经济发展、科技领先和国家安全的影响 ; 欧盟国家关注人工智能带来的安全、隐私、尊严等方面的伦理风险 ; 日本希望人工智能推进其超智能社会的建设 ; 而中国人工智能政策聚焦于实现人工智能领域的产业化,助力中国的制造强国战略。各国政策在研发重点和重点应用领域也存在着较大差异。
2. 国家政策 : 从物联网,到大数据,再到人工智能。从 2009 至今,中国人工智能政策的演变可以分为五个阶段,其核心主题词也不断变化,体现了各阶段发展重点的不同。
国家层面政策早期关注物联网、信息安全、数据库等基础科研,中期关注大数据和基础设施,而 2017年后人工智能成为最核心的主题,知识产权保护也成为重要主题。综合来看,中国人工智能政策主要关注以下六个方面 : 中国制造、创新驱动、物联网、互联网 +、大数据、科技研发。
3. 地方政策 : 响应国家战略,地方政策主题因地而异。地方政府积极响应国家人工智能发展战略,其中,《中国制造 2025》处于人工智能政策应用网络的核心,在地方人工智能政策制定过程中发挥着纲领性的作用。通过政策发布数量来看,目前中国人工智能发展活跃的区域主要集中在京津冀、长三角和粤港澳地区。各省的政策主题也大有不同,比如江苏省关注基础设施、物联网和云计算等基础研发领域,广东省关注制造和机器人等人工智能应用,而福建省关注物联网、大数据、创新平台和知识产权,各地政策与地方发展条件密切相关。
对社会的综合影响
随着人工智能的充分发展,劳动生产率和生产力水平的提升,人们的生活体验将更加丰富多彩,将更多地将人们从体力劳动乃至常规性的脑力劳动中解放出来,更多地投入到创造性活动当中,使人类自身与社会得到更充分的发展。当前,人工智能技术的突飞猛进正不断改变着零售、农业、物流、教育、医疗、金融、商务等领域的发展模式,重构生产、分配、交换、消费等各环节。根据 IDC 数据显示,在未来5 年内,人工智能技术应用到多个行业,将极大提高这些行业的运转效率,具体提升的效率为教育行业82%、零售业 71%、制造业 64%、金融业 58%。
1. 人工智能对教育和就业的影响。发展人工智能的最终目的不是用来替代人类,而是帮助人类变得更加智慧,而教育将在这个过程中起到关键性作用。人工智能技术提升经济活动中的产能,使得人们逐渐从机械的重复性的或危险的劳动中抽离出来,从而增加了思考、欣赏等闲暇时间,更专注于创新能力、思考能力、审美与想象力的潜能开发与提升。
目前,人工智能在教育领域的应用主要集中在以下几方面 : 自适应 ( 个性化 ) 学习、虚拟导师、教育机器人、基于编程和机器人的科技教育、基于虚拟现实 / 增强现实的场景式教育。用适合自己的方式去学习,不仅效率会提高,而且会保持更长时间的学习兴趣。
在教育领域深度发展人工智能的意义并不是取代教师,而是协助教师使教学变得更加高效和有趣。另外,在人工智能技术所影响的教育体系中,对人才的信息输入与输出能力、自主学习能力等的要求骤然提高,创新能力的培养也成为重要方向。
随着技术的发展逐步替代人类从事大部分繁琐重复的工作或体力劳动,在给人们带来福利的同时也带来前所未有的挑战。今天已经有越来越多的人担忧是否自己的工作会被人工智能技术所取代,或者只能在人工智能所留下的“夹缝”中生存。有专家对中国的就业岗位被人工智能取代的概率进行了估算,结果显示,未来 20 年中,约占总就业人口 76% 的劳动力会受到来自人工智能技术的冲击,若只考虑非农业人口,这一比例为 65 %。但同时,人工智能技术对就业的创造效应也已有所显现。调查显示,中国科技公司目前人工智能团队规模平均扩张 20%,而且这种需求还会增长。另外国家工业和信息化部教育考试中心专家称,在未来几年中国对 AI 领域的人才需求可能增至 500 万。
可以判断,在人工智能重塑产业格局和消费需求的情境下,一部分工作岗位终将被历史淘汰,但是也会伴随着人工智能技术孵化出一系列新的岗位。另一方面,新型的人机关系正在构建,非程序化的认知类工作会变得愈发难以替代,其对人的创新、思考与想象力提出更高的要求。
机械化和智能化塑造着新的就业格局,但也要警惕新格局下有可能发生的衍生问题,比如由于失业率上升而引起的贫富差距和社会稳定问题。人工智能所带来的“冲击”是持续性的,对教育和就业的多重影响也是持续性的,因此也需要不断积极探索与技术革命相匹配、相适应的教育与就业机制。
2. 人工智能对隐私与安全的影响。今天,在许多生活消费场景中,人们对个性化体验的需求不断增加,个性化、场景化服务也逐渐成为人工智能驱动创新的主要方向。服务供应方在信息获取社交化、时间碎片化的情境下,着力建立更灵活便捷的消费场景,给人们带来更加友好的用户体验。与此同时,随着语音识别、人脸识别、机器学习算法的发展和日趋成熟,企业可以通过分析客户画像真正理解客户,精准、差异化的服务使得客户的被重视被满足感进一步增强。但是在蕴藏着巨大商业价值的同时,也对现有法律秩序与公共安全构成了一定的挑战。
网络空间的虚拟性,使得个人数据更易于被收集与分享,极大地便利了身份信息编号、健康状态、信用记录、位置活动踪迹等信息的存储、分析和交易过程,与此同时,人们却很难追踪个人数据隐私的泄露途径与程度。例如,以人工智能技术为支撑的智慧医疗,病人的电子病例、私人数据归属权如何界定,医院获得及使用私人数据的权限界限如何规范。再比如人工智能技术生成作品的著作权问题等。开放的产业生态使得监管机构难以确定监管对象,也令法律的边界变得越来越模糊。
人工智能的普遍使用使得“人机关系”发生了趋势性的改变,人机频繁互动,可以说已形成互为嵌入式的新型关系。时间与空间的界限被打破、虚拟与真实也被随意切换,这种趋势下的不可预测性与不可逆性很有可能会触发一系列潜在风险。与人们容易忽略的“信息泄露”不同,人工智能技术也可能被少数别有用心的人有目的地用于欺诈等犯罪行为。如基于不当手段获取的个人信息形成“数据画像”,并通过社交软件等冒充熟人进行诈骗。再比如,使用人工智能技术进行学习与模拟,生成包括图像、视频、音频、生物特征在内的信息,突破安防屏障。去年曾有报道,新款苹果手机“刷脸”开机功能被绿色即是这类例子。而从潜在风险来看,无人机、无人车、智能机器人等都存在遭到非法侵入与控制,造成财产损失或被用于犯罪目的的可能。
3.人工智能对社会公平的影响。随着人工智能研发与应用的突飞猛进,一系列价值难题也正逐渐显现在人们面前。目前还有大量不会上网、由于客观条件无法使用互联网及不愿触碰互联网的人群,已经被定义为人工智能时代的“边缘人”,而人工智能对人们的文化水平、信息流的掌握程度又有了更高的要求。人工智能技术越发达,信息鸿沟就越深,进而演变为服务鸿沟、福利鸿沟,而在人工智能时代,“边缘人”将越来越难享受到便捷的智能信息服务,也更不易获得紧缺的服务资源。
本文转自 中国经济报告 2018年第10期,作者:清华大学中国科技政策研究中心
三、浅谈工业自动化企业布局机器视觉,智能生产即将迈向新领域
随着近年来我国制造业自动化改造的趋势愈加明显,越来越多的企业开始将机器视觉融入到自动化生产线中。其实在众多传统的工业自动化品牌中,能够提供专业视觉解决方案的厂家其实并不多。但是近年来,一大批传统的自动化系统供应商扎堆布局视觉产品,这背后隐藏的逻辑是什么?机器视觉又该如何完美应用到自动化生产流程中?
话说这年头的机器视觉技术,绝对可以算得上是工业领域的一大热门,因为市场前景一片大好而被各界广泛看好追捧,的确是件很自然的事情。不过,从产品和设备使用的角度看,我们更关注的或许是,将机器视觉和自动化控制“两个世界”的技术整合在一起,会在性能、成本以及应用体验...等各方面给用户带来怎样的影响和改变。
机器视觉的发展并非单一的应用。机器视觉技术使机器具有感知外界的眼睛,使机器具有与人类相同的视觉功能,从而实现各种检测,判断,识别和测量功能。 现在机器视觉的软硬件产品逐渐演变为产品生产和制造各阶段的重要组成部分。因此,这对系统的集成提出了更高的要求。
很多自动化公司需要集成的生产自动化系统,需要集合机器视觉与多种工业生产器械共同协同运作,比如工业机器人。它广泛应用于状态监测,成品检验和质量控制等多领域。 随着技术的不断进步,机器人与人之间的视觉差距正在逐渐缩小。视觉技术的成熟和发展使其在工业制造应用中得到越来越广泛的应用。
那么机器视觉又该如何完美应用到自动化生产流程中呢?
首先在集成机器视觉系统中,机器视觉仅仅是作为设备控制的一个应用模块,被整合到生产线设备的控制系统中。用户无需再考虑系统之间的数据交互和界面切换,仅使用一套自动化控制系统,即可以完成对各类应用参数的设置和调整。
机器视觉技术的应用将因此而被极大简化,设备的总体成本也会得到显著的优化。
貌似这样说还是太过于抽象了。接下来,让我们看几个在机器视觉的应用过程中可能出现的场景。
首先,若要将产品图像信息(如产品标识、条码/二维码、品质瑕疵...等)快速呈现到产线和管理系统的屏幕上,如:操作员终端、工厂大屏幕、中控室...等,在集成机器视觉系统中将变得极为简单,很可能也就是点几下鼠标的事情。
其次,在集成机器视觉系统中,将更容易实现对高速运动中的物体的精准图像捕捉,无需再在相机上接入编码器,直接使用由高速传感器触发获取的输送线位置,就可以完成对相机快门的实时控制。
而如果要在识别出产品瑕疵后进一步对其做出准确的剔废动作,目测用几条运控指令就完全可以搞定了。
再比如,若要对产线上的每个产品进行双重甚至多次图像识别,例如:需要同时记录产品条码、标签和外观,传统的做法需要为相邻的几台相机各接入一支光电触发传感器和编码器。
但如果使用集成机器视觉系统,就只需将一个光电输入信号、多台视觉相机和输送带编码器通过运控总线接入同一个设备控制系统,并基于输送带上的产品位置完成对相机快门动作的精准触发,硬件连接和软件逻辑都将因此变得非常简单。
另外,对于那些需要使用视觉技术辅助机器人操作的设备应用,使用集成机器视觉系统将可以把产品图像识别和机器人运动控制整合到同一个时间轴和空间坐标系中,从而省去两套系统之间大量繁琐的位置数据转换工作。
在机器视觉应用中,根据不同的产品/背景组合,适当的调整相机镜头和光源的参数设置(如:对焦、颜色...等),对于画面捕捉的质量和图像识别的性能也是极为重要的。如果将视觉技术集成、整合到设备控制系统中,那么用户仅通过在控制软件中编写的程序逻辑,就可以实现对这些分散在设备各处的视觉元件的自动设置和灵活调整,而无需再在现场逐一手动操作。这将极大的简化设备调试和运维的流程。
不难看出,若要将机器视觉整合到设备控制系统中,除了需要有一套集成视觉功能的设备控制器和系统软件,统一的现场总线网路也是必不可少的;并且,为了能够实现上述诸多基于视觉检测的高动态运控功能,这个网络系统还必须具备足够的实时确定性,以确保系统运行时各组件之间及时同步。
中国智能制造2025与机器视觉将密不可分。未来机器视觉技术必将成为工业自动化和智能的核心之一。要实现人机视觉在机器人上的延伸,必须要满足自动化程度高,效率高,精度高,适应性差的条件,在工业自动化过程中发挥重要作用。
广东全帝 科技 有限公司是一家专注于机器视觉核心算法研究,视觉检测设备,CCD光学检测设备,机器视觉定位检测,非标自动化设备,视觉方案定制和研发与一体的高新技术企业。目前自主研发针对工业生产制造企业的Smartmake视觉检测系统,已在电子、包装、印刷、化工、食品、塑胶、纺织等行业得到成功的应用与广泛好评。各级生产企业通过对机器视觉检测系统的现场应用,在实时监控产品生产质量、提高生产效率的同时,还可以大幅节约人工成本,是制造业在面向工业4.0时代的最佳选择。目前在全国范围内诚招代理,感兴趣的朋友可以在下方评论留言哦!
四、学习人工智能有哪些就业方向?
人工智能技术关系到人工智能产品是否可以顺利应用到我们的生活场景中。在人工智能领域,它普遍包含了机器学习、知识图谱、自然语言处理、人机交互、计算机视觉、生物特征识别、AR/VR七个关键技术。
一、机器学习
机器学习(MachineLearning)是一门涉及统计学、系统辨识、逼近理论、神经网络、优化理论、计算机科学、脑科学等诸多领域的交叉学科,研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,是人工智能技术的核心。基于数据的机器学习是现代智能技术中的重要方法之一,研究从观测数据(样本)出发寻找规律,利用这些规律对未来数据或无法观测的数据进行预测。根据学习模式、学习方法以及算法的不同,机器学习存在不同的分类方法。
根据学习模式将机器学习分类为监督学习、无监督学习和强化学习等。
根据学习方法可以将机器学习分为传统机器学习和深度学习。
二、知识图谱
知识图谱本质上是结构化的语义知识库,是一种由节点和边组成的图数据结构,以符号形式描述物理世界中的概念及其相互关系,其基本组成单位是“实体—关系—实体”三元组,以及实体及其相关“属性—值”对。不同实体之间通过关系相互联结,构成网状的知识结构。在知识图谱中,每个节点表示现实世界的“实体”,每条边为实体与实体之间的“关系”。通俗地讲,知识图谱就是把所有不同种类的信息连接在一起而得到的一个关系网络,提供了从“关系”的角度去分析问题的能力。
知识图谱可用于反欺诈、不一致性验证、组团欺诈等公共安全保障领域,需要用到异常分析、静态分析、动态分析等数据挖掘方法。特别地,知识图谱在搜索引擎、可视化展示和精准营销方面有很大的优势,已成为业界的热门工具。但是,知识图谱的发展还有很大的挑战,如数据的噪声问题,即数据本身有错误或者数据存在冗余。随着知识图谱应用的不断深入,还有一系列关键技术需要突破。
三、自然语言处理
自然语言处理是计算机科学领域与人工智能领域中的一个重要方向,研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法,涉及的领域较多,主要包括机器翻译、机器阅读理解和问答系统等。
机器翻译
机器翻译技术是指利用计算机技术实现从一种自然语言到另外一种自然语言的翻译过程。基于统计的机器翻译方法突破了之前基于规则和实例翻译方法的局限性,翻译性能取得巨大提升。基于深度神经网络的机器翻译在日常口语等一些场景的成功应用已经显现出了巨大的潜力。随着上下文的语境表征和知识逻辑推理能力的发展,自然语言知识图谱不断扩充,机器翻译将会在多轮对话翻译及篇章翻译等领域取得更大进展。
语义理解
语义理解技术是指利用计算机技术实现对文本篇章的理解,并且回答与篇章相关问题的过程。语义理解更注重于对上下文的理解以及对答案精准程度的把控。随着MCTest数据集的发布,语义理解受到更多关注,取得了快速发展,相关数据集和对应的神经网络模型层出不穷。语义理解技术将在智能客服、产品自动问答等相关领域发挥重要作用,进一步提高问答与对话系统的精度。
问答系统
问答系统分为开放领域的对话系统和特定领域的问答系统。问答系统技术是指让计算机像人类一样用自然语言与人交流的技术。人们可以向问答系统提交用自然语言表达的问题,系统会返回关联性较高的答案。尽管问答系统目前已经有了不少应用产品出现,但大多是在实际信息服务系统和智能手机助手等领域中的应用,在问答系统鲁棒性方面仍然存在着问题和挑战。
自然语言处理面临四大挑战:
一是在词法、句法、语义、语用和语音等不同层面存在不确定性;
二是新的词汇、术语、语义和语法导致未知语言现象的不可预测性;
三是数据资源的不充分使其难以覆盖复杂的语言现象;
四是语义知识的模糊性和错综复杂的关联性难以用简单的数学模型描述,语义计算需要参数庞大的非线性计算
四、人机交互
人机交互主要研究人和计算机之间的信息交换,主要包括人到计算机和计算机到人的两部分信息交换,是人工智能领域的重要的外围技术。人机交互是与认知心理学、人机工程学、多媒体技术、虚拟现实技术等密切相关的综合学科。传统的人与计算机之间的信息交换主要依靠交互设备进行,主要包括键盘、鼠标、操纵杆、数据服装、眼动跟踪器、位置跟踪器、数据手套、压力笔等输入设备,以及打印机、绘图仪、显示器、头盔式显示器、音箱等输出设备。人机交互技术除了传统的基本交互和图形交互外,还包括语音交互、情感交互、体感交互及脑机交互等技术。
五、计算机视觉
计算机视觉是使用计算机模仿人类视觉系统的科学,让计算机拥有类似人类提取、处理、理解和分析图像以及图像序列的能力。自动驾驶、机器人、智能医疗等领域均需要通过计算机视觉技术从视觉信号中提取并处理信息。近来随着深度学习的发展,预处理、特征提取与算法处理渐渐融合,形成端到端的人工智能算法技术。根据解决的问题,计算机视觉可分为计算成像学、图像理解、三维视觉、动态视觉和视频编解码五大类。
目前,计算机视觉技术发展迅速,已具备初步的产业规模。未来计算机视觉技术的发展主要面临以下挑战:
一是如何在不同的应用领域和其他技术更好的结合,计算机视觉在解决某些问题时可以广泛利用大数据,已经逐渐成熟并且可以超过人类,而在某些问题上却无法达到很高的精度;
二是如何降低计算机视觉算法的开发时间和人力成本,目前计算机视觉算法需要大量的数据与人工标注,需要较长的研发周期以达到应用领域所要求的精度与耗时;
三是如何加快新型算法的设计开发,随着新的成像硬件与人工智能芯片的出现,针对不同芯片与数据采集设备的计算机视觉算法的设计与开发也是挑战之一。
六、生物特征识别
生物特征识别技术是指通过个体生理特征或行为特征对个体身份进行识别认证的技术。从应用流程看,生物特征识别通常分为注册和识别两个阶段。注册阶段通过传感器对人体的生物表征信息进行采集,如利用图像传感器对指纹和人脸等光学信息、麦克风对说话声等声学信息进行采集,利用数据预处理以及特征提取技术对采集的数据进行处理,得到相应的特征进行存储。
识别过程采用与注册过程一致的信息采集方式对待识别人进行信息采集、数据预处理和特征提取,然后将提取的特征与存储的特征进行比对分析,完成识别。从应用任务看,生物特征识别一般分为辨认与确认两种任务,辨认是指从存储库中确定待识别人身份的过程,是一对多的问题;确认是指将待识别人信息与存储库中特定单人信息进行比对,确定身份的过程,是一对一的问题。
生物特征识别技术涉及的内容十分广泛,包括指纹、掌纹、人脸、虹膜、指静脉、声纹、步态等多种生物特征,其识别过程涉及到图像处理、计算机视觉、语音识别、机器学习等多项技术。目前生物特征识别作为重要的智能化身份认证技术,在金融、公共安全、教育、交通等领域得到广泛的应用。
七、VR/AR
虚拟现实(VR)/增强现实(AR)是以计算机为核心的新型视听技术。结合相关科学技术,在一定范围内生成与真实环境在视觉、听觉、触感等方面高度近似的数字化环境。用户借助必要的装备与数字化环境中的对象进行交互,相互影响,获得近似真实环境的感受和体验,通过显示设备、跟踪定位设备、触力觉交互设备、数据获取设备、专用芯片等实现。
虚拟现实/增强现实从技术特征角度,按照不同处理阶段,可以分为获取与建模技术、分析与利用技术、交换与分发技术、展示与交互技术以及技术标准与评价体系五个方面。获取与建模技术研究如何把物理世界或者人类的创意进行数字化和模型化,难点是三维物理世界的数字化和模型化技术;分析与利用技术重点研究对数字内容进行分析、理解、搜索和知识化方法,其难点是在于内容的语义表示和分析;交换与分发技术主要强调各种网络环境下大规模的数字化内容流通、转换、集成和面向不同终端用户的个性化服务等,其核心是开放的内容交换和版权管理技术;展示与交换技术重点研究符合人类习惯数字内容的各种显示技术及交互方法,以期提高人对复杂信息的认知能力,其难点在于建立自然和谐的人机交互环境;标准与评价体系重点研究虚拟现实/增强现实基础资源、内容编目、信源编码等的规范标准以及相应的评估技术。
目前虚拟现实/增强现实面临的挑战主要体现在智能获取、普适设备、自由交互和感知融合四个方面。在硬件平台与装置、核心芯片与器件、软件平台与工具、相关标准与规范等方面存在一系列科学技术问题。总体来说虚拟现实/增强现实呈现虚拟现实系统智能化、虚实环境对象无缝融合、自然交互全方位与舒适化的发展趋势
以上就是关于杭州视觉智能企业1562相关问题的回答。希望能帮到你,如有更多相关问题,您也可以联系我们的客服进行咨询,客服也会为您讲解更多精彩的知识和内容。
推荐阅读: