圆的元素在景观设计的应用(圆的元素在景观设计的应用论文)
大家好!今天让创意岭的小编来大家介绍下关于圆的元素在景观设计的应用的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。
创意岭作为行业内优秀的企业,服务客户遍布全球各地,如需了解景观设计相关业务请拨打电话175-8598-2043,或添加微信:1454722008
本文目录:
一、圆在生活中有哪些应用?为什么草原上的蒙古包是圆形的?为什么绝大多数植物的根和茎的横截面是圆形?
汽车的轮子、方向盘,吃饭的碗、碟子和圆桌。喝水的茶杯等
蒙古包为天穹式,呈圆形,木架外边用白羊毛毡覆盖。因为它是圆形的,所以立在草原上,大风雪中阻力小,再大的地震中也不会变形,顶上又不积雨雪,寒气不易侵入,是非常安全的住所。
因为园耗材少,而且它是圆形的,立在草原上,大风雪中阻力小,再大的地震中也不会变形,顶上又不积雨雪,寒气不易侵入,是非常安全的住所。
世界上所有的生物为了生存,总是朝着对环境最有适应性的方面发展的,植物也是如此,植物的茎呈圆柱形(圆锥形)也是自身生长繁衍的需要。
几何角度去理解,周长相同时,圆的面积比其他任何形状都要大。相对所需的构建原料较少。因此圆形树干、树枝、植物茎中导管和筛管的分布数量要比其他形状的多的多,这样,圆形植物茎输送水分和养料的能力就要大,更有利于植物的生长。另外圆柱形的体积也比其他柱形的体积大,它具有很大的支撑力,当树枝上挂满果实时,它能强有力地支撑着树冠,使树干不至于弯曲。
植物茎的横截面呈圆形,可以减少损伤,具有更强的机械强度,能经受住风的袭击。同时,受风力的影响,植物茎各处的弯曲程度相似,不管风力来自哪个方向,植物茎承受的阻力大小相似,植物茎不易受到破坏。
还有,植物的茎比较柔软,可以随风摇动,不容易折断。
二、圆形元素的概述
【圆的基本知识】
〖几何中圆的定义〗
圆 几何说:平面上到定点的距离等于定长的所有点组成的图形叫做圆。定点称为圆心,定长称为半径。
轨迹说:平面上一动点以一定点为中心,一定长为距离运动一周的轨迹称为圆周,简称圆。
集合说:到定点的距离等于定长的点的集合叫做圆。
〖圆的相关量〗
圆周率:圆周长度与圆的直径长度的比叫做圆周率,值是3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679...,通常用π表示,计算中常取3.14为它的近似值(但奥数常取3或3.1416)。
圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧。连接圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。
圆心角和圆周角:顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。
内心和外心:过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。
扇形:在圆上,由两条半径和一段弧围成的图形叫做扇形。
圆锥侧面展开图是一个扇形。这个扇形的半径称为圆锥的母线。
〖圆和圆的相关量字母表示方法〗
圆—⊙ 半径—r 弧—⌒ 直径—d
扇形弧长/圆锥母线—l 周长—C 面积—S
〖圆和其他图形的位置关系〗
圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO<r。
直线与圆有3种位置关系:无公共点为相离;有两个公共点为相交,这条直线叫做圆的割线;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。以直线AB与圆O为例(设OP⊥AB于P,则PO是AB到圆心的距离):AB与⊙O相离,PO>r;AB与⊙O相切,PO=r;AB与⊙O相交,PO<r。
两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有两个公共点的叫相交。两圆圆心之间的距离叫做圆心距。两圆的半径分别为R和r,且R≥r,圆心距为P:外离P>R+r;外切P=R+r;相交R-r<P<R+r;内切P=R-r;内含P<R-r。
[编辑本段]【圆的平面几何性质和定理】
一有关圆的基本性质与定理
⑴圆的确定:画一条线段,以线段长为半径以一端点为圆心画弧绕360度后得到圆。
圆的对称性质:圆是轴对称图形,其对称轴是任意一条通过圆心的直线。圆也是中心对称图形,其对称中心是圆心。 垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的2条弧。逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的2条弧。
⑵有关圆周角和圆心角的性质和定理 在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。 一条弧所对的圆周角等于它所对的圆心角的一半。 直径所对的圆周角是直角。90度的圆周角所对的弦是直径。 如果一条弧的长是另一条弧的2倍,那么其所对的圆周角和圆心角是另一条弧的2倍。
⑶有关外接圆和内切圆的性质和定理
①一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形三个顶点距离相等;
②内切圆的圆心是三角形各内角平分线的交点,到三角形三边距离相等。
③R=2S△÷L(R:内切圆半径,S:面积,L:周长)
④两相切圆的连心线过切点(连心线:两个圆心相连的线段)
⑤圆O中的弦PQ的中点M,过点M任作两弦AB,CD,弦AD与BC分别交PQ于X,Y,则M为XY之中点。
(4)如果两圆相交,那么连接两圆圆心的线段(直线也可)垂直平分公共弦。
〖有关切线的性质和定理〗
圆的切线垂直于过切点的半径;经过半径的一端,并且垂直于这条半径的直线,是这个圆的切线。
切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线。
切线的性质:(1)经过切点垂直于这条半径的直线是圆的切线。(2)经过切点垂直于切线的直线必经过圆心。(3)圆的切线垂直于经过切点的半径。
切线长定理:从圆外一点到圆的两条切线的长相等,那点与圆心的连线平分切线的夹角。
〖有关圆的计算公式〗
1.圆的周长C=2πr=πd 2.圆的面积S=πr^2; 3.扇形弧长l=nπr/180
4.扇形面积S=(nπr^2)/360=lr/2(l为扇形的弧长)5.圆锥侧面积S=πrl 6.圆锥侧面展开图(扇形)的圆心角n=360r/l(r是底面半径,l是母线长)
[编辑本段]【圆的解析几何性质和定理】
〖圆的解析几何方程〗
圆的标准方程:在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是(x-a)^2+(y-b)^2=r^2。
圆的一般方程:把圆的标准方程展开,移项,合并同类项后,可得圆的一般方程是x^2+y^2+Dx+Ey+F=0。和标准方程对比,其实D=-2a,E=-2b,F=a^2+b^2-r^2。
圆的离心率e=0,在圆上任意一点的曲率半径都是r。
〖圆与直线的位置关系判断〗
平面内,直线Ax+By+C=0与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是:
1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的一元二次方程f(x)=0。利用判别式b^2-4ac的符号可确定圆与直线的位置关系如下:
如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交。
如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切。
如果b^2-4ac<0,则圆与直线有0交点,即圆与直线相离。
2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x轴),将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2。令y=b,求出此时的两个x值x1、x2,并且规定x1<x2,那么:
当x=-C/A<x1或x=-C/A>x2时,直线与圆相离;
当x1<x=-C/A<x2时,直线与圆相交;
半径r,直径d
在直角坐标系中,圆的解析式为:(x-a)^2+(y-b)^2=r^2
x^2+y^2+Dx+Ey+F=0
=> (x+D/2)^2+(y+E/2)^2=D^2/4+E^2/4-F
=> 圆心坐标为(-D/2,-E/2)
其实不用这样算 太麻烦了
只要保证X方Y方前系数都是1
就可以直接判断出圆心坐标为(-D/2,-E/2)
这可以作为一个结论运用的
且r=根号(圆心坐标的平方和-F)
[编辑本段]圆知识点总结
平面上到定点的距离等于定长的所有点组成的图形叫做圆。
圆心:圆中心固定的一点叫做圆心。用字母o或⊙表示
直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。用字母d表示。
半径:连接圆心和圆上任意一点的线段,叫做圆的半径。用字母r表示。
圆的直径和半径都有无数条。在同圆或等圆中:直径是半径的2倍,半径是直径的1/2.
圆的半径或直径决定了圆的大小,圆心决定了圆的位置。
圆的周长:围成圆的曲线的长度叫做圆的周长,用C表示。
圆的周长与直径的比值叫做圆周率。
圆周率是一个固定的数,它是一个无限不循环小数,用字母π表示。近似等于3.14。
直径所对的圆周角是直角。90度的圆周角所对的弦是直径。
圆的面积公式:πr方,用字母S表示。
三、圆形湖的景观设计理念怎么写的呢
1、首先打开WPS办公软件,并新建一个以圆形湖的景观设计理念为题的文件。
2、其次从实际出发,依据北方气候特点选择树种,尽量利用原有地形、地势,适地适树。
3、最后讲求绿化的实效性,运用复层配置手法,形成群落植物景观即可。
四、哪种圆模板最适合景观设计用的
与景观道路、广场有关的绿化形式有:中心绿岛、回车岛等;行道树;花钵、花树坛、树阵;两侧绿化。
据巅峰智业介绍,最好的绿化效果,应该是林荫夹道。郊区大面积绿化,行道树可和两旁绿化种植结合在一起,自由进出,不按间距灵活种植,实现路在林中走的意境。这不妨称之为夹景;一定距离在局部稍作浓密布置,形成阻隔,是障景。障点使人有"山重水复疑无路,栖口暗花明又一村"的意境。城市绿地则要多几种绿化形式,才能减少人为的破坏。在车行道路,绿化的布置要符合行车视距、转弯半径等要求。特别是不要沿路边种植浓密树丛,以防人穿行时刹车不及。
百度 巅峰智业
以上就是关于圆的元素在景观设计的应用相关问题的回答。希望能帮到你,如有更多相关问题,您也可以联系我们的客服进行咨询,客服也会为您讲解更多精彩的知识和内容。
推荐阅读: