推荐系统排行榜(推荐系统排行榜最新)
大家好!今天让小编来大家介绍下关于推荐系统排行榜的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。
创意岭作为行业内优秀的企业,服务客户遍布全球各地,相关业务请拨打电话:175-8598-2043,或添加微信:1454722008
文章目录列表:
一、买房app十大排行榜
买房app十大排行榜有以下这些:
1、房天下,一款为使用者收纳天下房源信息的软件,在软件中,拥有上亿人一起使用,超过五百万的业主的选择,值得信赖,专属顾问随时在线,全程陪伴,障质量,私人定制看房路线,直达售楼处。2、房房房,一款真正保证买房者权益的软件。在这里,买卖新房需要拿出证明来为其提供信用力,出售,出租旧房需要提供房产证或购房合同等证明。
3、房星找房,一款为用户整合二手房,新房信息的软件。在软件中,可以为想要买房的用户提供可信赖的服务,能够满足用户的各色要求平台可信,能够全程监督置业顾问的每一次服务。
4、房交易,一个为客户提供房地产服务的综合软件,在软件中我们可以享受到最机制的服务,在这里拥有多位十几年交易经验的交易员,多个全国房地产经纪人职业证书为使用者进行服务。
5、房谱,一款可以提供真实地点的房源软件。在其中,我们可以在地图上真正的看到房源信息,来判断最合适的房源。软件目前已成功上线80多个城市,所有在售房源信息一网打尽,一个不漏。
6、贝壳找房,在这里拥有最全面的房源信息。提供全面真实实时的房源动态、透明的房产行情、高效的找房工具等特色工具。海量房源信息,真实在售。
7、自如,一款让用户轻松租房,买房的软件。在软件中,用户可以挑选房子完成轻松拎包住房,也可以自由选择多种房源。多种贴心服务专属管家、周期保洁、及时维修,让生活更自如。
8、乐居买房,房源咨询五花八门,找房头疼难难难,想要租房就来这里,多种信息整理推荐,清晰明了买好房,楼盘拿证开盘等时间节点一目了然,详情页增强服务,摇号选房尽在其中。
9、诸葛找房,每日更新房源信息,每天超过十亿信息处理,让用户坐享天下咨询,更有具有特色的房价分析,全行业实用直观的二手房价格趋势及房源分布展示。
10、安居客,业界强大的推荐系统为智能推荐安心房源,足不出户实景看房,省心又安全。装修增加品牌装企推荐,专业保障,放心选择。
二、推荐系统产品和算法概述丨产品杂谈系列
本文主要是对最近所学的推荐系统的总结,将会简单概述非个性化范式、群组个性化范式、完全个性化范式、标的物关联标的物范式、笛卡尔积范式等5种常用的推荐范式的设计思路。
许多产品的推荐算法都依赖于三类数据:标的物相关的描述信息(如推荐鞋子,则包括鞋子的版型、适用对象、材质等信息、用户画像数据(指的是用户相关数据,如性别、年龄、收入等)、用户行为数据(例如用户在淘宝上的浏览、收藏、购买等)。这三类数据是推荐模型的主要组成部分,除此之外一些人工标注的数据(例如为商品人工打上标签)、第三方数据也能够用于补充上述的三类数据。
服务端在有以上数据的基础上,就可以从三个维度进行推荐:
根据个性化推荐的颗粒度,我们可以将基于用户维度的推荐分为非个性化推荐、群组个性化推荐及完全个性化推荐三种类型。
非个性化推荐指的是每个用户看到的推荐内容都是一样的 在互联网产品中,我们最常见的非个性化推荐的例子是各种排行榜,如下图是酷狗音乐的排行榜推荐,通过各个维度计算各类榜单,不管是谁看到这个榜单,上面的排序和内容都是一致的。
群组个性化推荐指的是将具有相同特征的用户聚合成一组,同一组用户在某些方面具备相似性,系统将为这一组用户推荐一样的内容 。这种推荐方式是很多产品进行用户精细化运营时会采用的方式,通过用户画像系统圈定一批批用户,并对这批用户做统一的运营。例如音乐软件的推荐播放,若以摇滚乐为基准将一批用户聚合成组,则为这些用户提供的每日推荐歌单是相同的内容和顺序,但与另一组爱听民谣的用户相比,两组用户看到的每日推荐内容将是不同的。
完全个性化指的是为每个用户推荐的内容都不一样,是根据每一位用户的行为及兴趣来为用户做推荐,是当今互联网产品中最常用的一种推荐方式 。大多数情况下我们所说的推荐就是指这种形式的推荐,例如淘宝首页的“猜你喜欢”就是一个完全个性化的推荐,千人千面,每个人看到的推荐尚品都不一样。
完全个性化可以只基于用户行为进行推荐,在构建推荐算法时只考虑到用户个人的特征和行为 ,不需要考虑其他用户,这也是最常见的内容推荐方式。除此之外, 还可以基于群组行为进行完全个性化推荐,除了利用用户自身的行为外,还依赖于其他用户的行为构建推荐算法模型 。例如,用户属性和行为相似的一群用户,其中90%的用户买了A商品后也买了B商品,则当剩下的10%用户单独购买B商品时,我们可以为该用户推荐商品A。
基于群组行为进行的完全个性化推荐可以认为是全体用户的协同进化,常见的协同过滤、基于模型的推荐等都属于这类推荐形式。
基于标的物的推荐指的是用户在访问标的物详情页或者退出标的物详情页时,可以根据标的物的描述信息为用户推荐一批相似的或者相关的标的物,对应的是最开始提到的“标的物关联标的物范式” 。如下图酷狗的相似歌曲推荐,
除了音乐产品外,视频网站、电商、短视频等APP都大量使用基于标的物维度的推荐。如下图便是YouTube基于标的物关联标的物的推荐。在YouTube上我观看一个周杰伦的音乐视频时,YouTube在该页面下方为我推荐更多与周杰伦有关的视频。
基于用户和标的物交叉维度的推荐指的是将用户维度和标的物维度结合起来,不同用户访问同一标的物的详情页时看到的推荐内容也不一样,对应的是开头提到的笛卡尔积推荐范式。 拿酷狗音乐对相似歌曲的推荐来举例,如果该推荐采用的是用户和标的物交叉维度的推荐的话,不同用户看到的“没有理想的人不伤心”这首歌曲,下面的相似歌曲是不一样的。拿淘宝举例的话,一样是搜索“裤子”这一关键词,不同的人搜索得到的搜索结果和排序是不同的,可能用户A搜索出来优先展示的是牛仔裤,而用户B优先展示的是休闲裤,淘宝将结合搜索关键词与用户个人的历史行为特征展示对应的搜索结果和排序。
对于基于笛卡尔积推荐范式设计的推荐系统来说,由于每个用户在每个标的物上的推荐列表都不一样,我们是没办法是先将所有组合计算出来并储存(组合过多,数量是非常巨大的),因此对于系统来说,能否在用户请求的过程中快速地为用户计算个性化推荐的标的物列表将会是一个比较大的挑战,对于整个推荐系统的架构也有更高的要求,因此在实际应用中,该种推荐方式用的比较少。
非个性化范式指的是为所有用户推荐一样的标的物列表,常见的各种榜单就是基于此类推荐规则,如电商APP中的新品榜、畅销榜等。排行榜就是基于某个规则来对标的物进行排序,将排序后的部分标的物推荐给用户。例如新品榜是按照商品上架的时间顺序来倒序排列,并将排序在前列的产品推荐给用户。而畅销榜则是按照商品销量顺序降序排列,为用户推荐销量靠前的商品。
根据具体的产品和业务场景,即使同样是非个性化范式推荐,在具体实施时也可能会比较复杂。例如在电商APP中畅销榜的推荐可能还会将地域、时间、价格等多个维度纳入考虑范围内,基于每个维度及其权重进行最终的排序推荐。
大部分情况下,非个性化范式推荐可以基于简单的计数统计来生成推荐,不会用到比较复杂的机器学习算法,是一种实施门槛较低的推荐方式。基于此,非个性化范式推荐算法可以作为产品冷启动或者默认的推荐算法。
完全个性化范式是目前的互联网产品中最常用的推荐模式,可用的推荐方法非常多。下面对常用的算法进行简单梳理。
该推荐算法只需要考虑到用户自己的历史行为而不需要考虑其他用户的行为,其核心思想是:标的物是有描述属性的,用户对标的物的操作行为为用户打上了相关属性的烙印,这些属性就是用户的兴趣标签,那么我们就可以基于用户的兴趣来为用户生成推荐列表。还是拿音乐推荐来举例子,如果用户过去听了摇滚和民谣两种类型的音乐,那么摇滚和民谣就是这个用户听歌时的偏好标签,此时我们就可以为该用户推荐更多的摇滚类、民谣类歌曲。
基于内容的个性化推荐在实操中有以下两类方式。
第一种是基于用户特征标识的推荐。
标的物是有很多文本特征的,例如标签、描述信息等,我们可以将这些文本信息基于某种算法转化为特征向量。有了标的物的特征向量后,我们可以将用户所有操作过的标的物的特征向量基于时间加权平均作为用户的特征向量,并根据用户特征向量与标的物特征向量的乘积来计算用户与标的物的相似度,从而计算出该用户的标的物推荐列表。
第二种是基于倒排索引查询的推荐。
如果我们基于标的物的文本特征(如标签)来表示标的物属性,那么基于用户对该标的物的历史行为,我们可以构建用户画像,该画像即是用户对于各个标签的偏好,并且对各个标签都有相应的偏好权重。
在构建完用户画像后,我们可以基于标签与标的物的倒排索引查询表,以标签为关键词,为用户进行个性化推荐。
举个粗暴的例子,有歌曲A、B、C分别对应摇滚、民谣、古风三个音乐标签,我听了歌曲A、B,则在我身上打了摇滚和民谣的标签,又基于我听这两个歌曲的频率,计算了我对“摇滚”和“民谣”的偏好权重。
在倒排索引查询表中,摇滚和民谣又会分别对应一部分歌曲,所以,可以根据我对摇滚和民谣的偏好权重从查询表中筛选一部分歌曲并推荐给我。
基于倒排索引查询的推荐方式是非常自然直观的,只要用户有一次行为,我们就可以据此为用户进行推荐。但反过来,基于用户兴趣给用户推荐内容,容易局限推荐范围,难以为用户推荐新颖的内容。
基于协同过滤的推荐算法,核心思想是很朴素的”物以类聚、人以群分“的思想。所谓物以类聚,就是计算出每个标的物最相似的标的物列表,我们就可以为用户推荐用户喜欢的标的物相似的标的物,这就是基于物品的协同过滤。所谓人以群分,就是我们可以将与该用户相似的用户喜欢过的标的物(而该用户未曾操作过)的标的物推荐给该用户,这就是基于用户的协同过滤。
常见的互联网产品中,很多会采用基于标的物的协同过滤,因为相比之下用户的变动概率更大,增长速度可能较快,这种情况下,基于标的物的协同过滤算法将会更加的稳定。
协同过滤算法思路非常简单直观,也易于实现,在当今的互联网产品中应用广泛。但协同过滤算法也有一些难以避免的问题,例如产品的冷启动阶段,在没有用户数据的情况下,没办法很好的利用协同过滤为用户推荐内容。例如新商品上架时也会遇到类似的问题,没有收集到任何一个用户对其的浏览、点击或者购买行为,也就无从基于人以群分的概念进行商品推荐。
基于模型的推荐算法种类非常多,我了解到的比较常见的有迁移学习算法、强化学习算法、矩阵分解算法等,且随着近几年深度学习在图像识别、语音识别等领域的进展,很多研究者和实践者也将其融入到推荐模型的设计当中,取得了非常好的效果。例如阿里、京东等电商平台,都是其中的佼佼者。
由于该算法涉及到比较多的技术知识,在下也处于初步学习阶段,就不班门弄斧做过多介绍了,有兴趣的朋友可以自行进行学习。
群组个性化推荐的第一步是将用户分组,因此,采用什么样的分组原则就显得尤为重要。常见的分组方式有两种。
先基于用户的人口统计学数据(如年龄、性别等)或者用户行为数据(例如对各种不同类型音乐的播放频率)构建用户画像。用户画像一般用于做精准的运营,通过显示特征将一批人圈起来形成同一组,对这批人做针对性的运营。因为前头已经提到此算法,这里不再重复介绍。
聚类是非常直观的一种分组思路,将行为偏好相似的用户聚在一起成为一个组,他们有相似的兴趣。常用的聚类策略有如下两类。
标的物关联标的物就是为每个标的物推荐一组标的物。该推荐算法的核心是怎么从一个标的物关联到其他的标的物。这种关联关系可以是相似的(例如嘉士伯啤酒和喜力啤酒),也可以是基于其他维度的关联(例如互补品,羽毛球拍和羽毛球)。常用的推荐策略是相似推荐。下面给出3种常用的生成关联推荐的策略。
这类推荐方式一般是利用已知的数据和标的物信息来描述一个标的物,通过算法的方式将其向量化,从而根据不同标的物向量之间的相似度来急速标的物之间的相似度,从而实现相识标的物的推荐。
在一个成熟的产品中,我们可以采集到的非常多的用户行为,例如在电商平台中,我们可以手机用户搜索、浏览、收藏、点赞等行为,这些行为就代表了用户对某个标的物的某种偏好,因此,我们可以根据用户的这些行为来进行关联推荐。
例如,可以将用户的行为矩阵分解为用户特征矩阵和物品特征矩阵,物品特征矩阵可以看成是衡量物品的一个向量,利用该向量我们就可以计算两个标的物之间的相似度了,从而为该用户推荐相似度高的其他产品。
再例如, 采用购物篮的思路做推荐,这种思路非常适合图书、电商等的推荐 。 以电商为例,我们可以把用户经常一起浏览(或者购买)的商品形成一个列表,将过去一段时间所有的列表收集起来。对于任何一个商品,我们都可以找到与它一起被浏览或者购买的其他商品及其次数,并根据次数来判断其关联性,从而进行关联推荐。
我们可以对用户进行分组,同样,我们也能够对标的物进行聚类分组。通过某位参考维度,我们将一些列具有相似性的标的物分成一组,当我们为用户进行推荐的时候,便可以将同一组内的其他标的物作为推荐对象,推荐给用户。
笛卡尔积范式的推荐算法一般是先采用标的物关联标的物范式计算出待推荐的标的物列表。再根据用户的兴趣来对该推荐列表做调整(例如根据不同兴趣的权重重新调整推荐列表的排序)、增加(例如基于个性化增加推荐对象)、删除(例如过滤掉已经看过的),由于其复杂程度较高在实际业务场景中应用较少,这边不再详细介绍。
好了,本次的介绍就到此为止了。本次主要是做了一个非常简单的推荐算法概述,在实际的业务场景中,还经常需要与产品形态或者更多的未读(如时间、地点等)相结合,是一个很有意思的领域,有兴趣的朋友可以进一步了解。
三、评价推荐系统的几个标准
前言
推荐系统的评测指标用于评价推荐系统的各方面性能。这些指标(之前推送过一篇文章:《推荐系统的十二大评价指标总结》,可以点击查看)有的可以离线获得,有的可以用户调研获得,有的只能在线获得。现在对于不同的指标做下详细的说明。
1.用户满意度
用户作为推荐系统的重要参与者,其满意度是评测推荐系统的最重要指标。但是,用户满意没有办法离线获得,只能通过童虎调查或者在线实验获得。
2.预测精准度
预测精准度是度量一个推荐系统(或者推荐算法)预测用户行为的能力。这个指标是最重要的推荐系统离线评测指标,从推荐系统诞生那天起,几乎99%的于推荐系统相关的论文都在讨论这个指标。
在计算该指标时需要一个离线的数据集,这个数据集包含了用户的 历史 行为记录。然后将这个数据集通过时间分成训练集和测试集。最后,通过在训练集上面建立用户的行为和兴趣模型预测用户在测试集上的行为,并计算预测行为和测试集上面的实际行为的重合度作为预测准确度。
3.覆盖度
它是描述一个推荐系统对长尾商品的发掘能力的。覆盖度的定义方法有不同。最简单的定义为推荐系统能够推荐出来的商品占总商品集合的比例。
从上面的定义可以看到,覆盖率是一个内容供应商(商家)会关心的指标。这里以图书为例,出版社可能会关心他们的数有没有被推荐给用户。覆盖率为100%的推荐系统可以将每一本书推荐给至少一个用户。此外,从上面的定义也可以知道,热门排行榜(Top 100等等)的覆盖率就很低。它只会推荐那些热门的商品,而这些商品占总商品数的比例是很小的。一个好的推荐系统,不仅仅需要比较高的用户满意度,也要有较高的覆盖度。
社会 学领域有一个著名的马太效应,所谓强者越强,弱者更弱的效应。搜索引擎的PageRank算法也具有一定的马太效应,推荐系统的初衷是希望消除马太效应,让商品都有被用户浏览的机会,但是现实是主流的推荐算法(例如协同过滤算法)也是有马太效应的。
4. 多样性
用户的兴趣是广泛的,在一个视频网站中,用户可能既喜欢看《名侦探柯南》,也喜欢看成龙的功夫片,那么,为了满足用户广泛的兴趣,推荐列表需要能够极可能的覆盖用户的不同兴趣领域,即推荐结果要有多样性。
关于推荐系统的多样性最好要达到什么程度?可以通过一个例子说明。假设用户喜欢看动作片和动画片,且80%时间在看动作片,20%时间在看动画片。那么,可以提供4中不同的推荐列表。A中10部动作片,没有动画片;B中10部动画片,没有动作片;C中8部动作片,2部动画片;D中5部动作片,5部动画片。在这个例子中,一般认为C是最好的,它既考虑的多样性,有符合用户的 历史 行为习惯。
5.新颖性
新颖的推荐是指给用户推荐那些他们之前没有听过的物品。在一个网站中实现新颖性的最简单的办法是,把那些用户之前在网站在对其有过行为的物品从推荐列表中过滤掉。评测新颖度的最简单的办法是利用推荐结果的平均流行度,因为越不热门的商品越可能让用户觉得新颖。因此,如果推荐结果中物品的平均热门程度较低,那么推荐结果就可能有较高的新颖度。
6.惊喜度
惊喜度是最近几年推荐系统领域热门的话题。但什么是惊喜度,惊喜度和新颖度有什么区别是首先要搞清的问题。
可以举个例子说明这两种指标的区别。假设一名用户喜欢周星驰的电影,然后我们给他推荐一部叫做《临歧》的电影,二用户不知道这部电影,那么这个推荐是有新颖性的。但是,这个推荐并没有惊喜度,因为用户一旦了解周星驰的电影,就不会觉得奇怪。但是我们给他推荐一部《活着》,假设用户没有看过这部电影,那么他看完后觉得这部电影还不错,那么就可以说这个推荐让用户觉得是惊喜的。这个例子的基本意思就是,如果推荐结果和用户的 历史 兴趣不相似,却让用户觉得满意,那么就可以说推荐结果的惊喜度很高,而推荐的新颖性仅仅取决于用户是否听过这个推荐结果。
7.可信度
如果你有两个朋友,一个你很信任,一个满嘴跑火车,那么如果你信任的朋友推荐你去A地方 旅游 ,你很可能听从他的推荐,但那位满嘴跑火车的推荐你去A地方去 旅游 ,相信你多半是不会去的。这两个人可以看成两个推荐系统,尽管他们推荐的结果相同,但你却产生了不同的反应,因为你对他们的信任度是不同的。
提高推荐系统的信任度主要有两种办法。一是增加推荐系统的透明度,而增加透明度的主要办法就是提供推荐解释。只有让用户了解推荐系统的运行机制,让用户认可推荐系统的工作机制,用户才会信任来自推荐系统的推荐。二是考虑用户社交网络的信息,利用好友的信息给用户做推荐,并且用好友进行解释。这是因为用户对他们的好友计较信任,如果这个物品好友买过,那么他们对推荐结果就会相对比较信任。
8.实时性
在很多网站中,因为物品(新闻、微博等)具有很强的时效性,所以需要在物品还有时效性的时候推荐给用户。比如,给用户推荐昨天的新闻显然不如推荐刚刚发生的新闻。因此,在这些网站中,推荐系统的时效性就至关重要。
9.健壮性
任何一个能带来利益算法系统都会被人攻击。这方面最典型的例子就是搜索引擎。搜索引擎的作弊和反作弊斗争异常激烈,这是因为如果自己的商品能成为热门搜索词语的第一个搜索结果,会带来极大的商业利益。推荐系统也面临这这个问题,而健壮性指标衡量了一个推荐系统的抗击作弊的能力。
四、无人自助棋排系统排名前几位都有哪个
2022中国无人机十大品牌排行榜
(1)大疆DJI
DJI大疆创新致力于持续推动人类进步,自2006年成立以来,在无人机、手持影像、机器人教育及更多前沿创新领域不断革新技术产品与解决方案,重塑人们的生产和生活方式,DJI大疆创新与全球合作伙伴携手开拓空间智能时代,让科技之美超越想象
(2)亿航eHANG
亿航智能是一家领先的智能自动驾驶飞行器科技企业,能为多个行业领域客户提供各种自动驾驶飞行器产品和解决方案,是较早拥有体感操控功能的企业
(3)JOUAV
始创于2010年,工业级垂直起降固定翼无人机系统产品和行业整体解决方案知名供应商,专注于为客户提供智能化、标准化、项化的工业无人机系统的高科技企业
(4)极KXAG
极飞科技是一家以“提升全球农业生产效率”为使命,构建“无人化”农业生态系统的智慧农业科技公司,成立十几以年来,极飞自主研发并制造了农业无人机、农业无人车、农机自驾仪、农业物联网、遥感无人机、智慧农业系统等智慧农业产品线。
(5)飞马机器人FEIMAROBOTICS
成立于2015年,国内知名无人机品牌,立足国内航测遥感无人机领域,集产品研发、生产和销售于一体的科技型企业,致力于提供无人机软硬件-体化解决方案和一站式空间数据系统服务。
(6)傲势AOSSCI
成立于2015年,吉利科技集团旗下,国内无人系统技术自主创新的引领者,致力于向国内外国土测绘、公共安全、电力巡线、资源勘探及环境保护等各个行业提供完整无忧的无人机系统解决方案,包括X系列、H系列无人机系统、地面站、飞控系统等关键子系统及无人机协同设计与仿真工具链等。
(7)易瓦特Ewatt
创立于2010年,全球领先的民用无人机系统制造商,打造民用无人机产业集群生态链,主要从事工业级无人机的设计、研发、生产、销售与服务等。
(8)PowerVision臻迪
成立于2009年,以以工智能技术为核心,跨界空中、水面和水下的机器人公司,主要从事工业级无人机、消费级无人机、水面及水下机器人的研发、制造、销售和售后服务。
(9)道通智能
成立于2014年,2015年推出第一代无人机产品X-STAR,其EVOll系列折叠式无人机在消费级无人机市场具有一定影响力,致力于为全球用户提供品质卓越、操作简单、性价比高的创新型无人机产品。
(10)普宙GDU
普宙科技成立于2015年,研发、生产和销售智能化重载、长航时无人直升机、工业级多旋翼无人机,并提供专业无人机行业应用系统解决方案的高科技企业。
公众号1:southmoney
客服号:southmoneycom
公众号3:zaiyunli
南方财富网声明:资讯来源于合作媒体及机构,属作者个人观点,仅供投资者参考,并不构成投资建议。投资者据此操作,风险自担。投诉
挖题材
牛熊风向标
主力持仓
图解财报
资金流向
股票
股票PK
研报中心
新股计划
龙虎榜
推荐
2022年中国十大板材企业排行榜 2022国内板材品牌十大排名
南方财富网 2022-08-25 09:20:22
2022年世界十大牛奶品牌排行榜 2022全球牛奶企业排名前十名
南方财富网 2022-08-24 14:46:07
2022年中国工业互联网龙头企业排名 2022国内工业互联网企业排行榜
南方财富网 2022-08-24 11:40:05
2022全球涂料企业排名榜 2022年全球油漆和涂料企业排行榜
以上就是小编对于推荐系统排行榜问题和相关问题的解答了,如有疑问,可拨打网站上的电话,或添加微信。
推荐阅读: