数据分析都有哪些方法(数据分析都有哪些方法和技巧)
大家好!今天让创意岭的小编来大家介绍下关于数据分析都有哪些方法的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。
开始之前先推荐一个非常厉害的Ai人工智能工具,一键生成原创文章、方案、文案、工作计划、工作报告、论文、代码、作文、做题和对话答疑等等
只需要输入关键词,就能返回你想要的内容,越精准,写出的就越详细,有微信小程序端、在线网页版、PC客户端
创意岭作为行业内优秀企业,服务客户遍布全国,网络营销相关业务请拨打175-8598-2043,或微信:1454722008
本文目录:
一、数据分析的六种基本分析方法
数据分析的六种基本分析方法:
1、对比分析法 :常用于对纵向的、横向的、最为突出的、计划与实际的等各种相关数据的。例如:今年与去年同期工资收入的增长情况、3月CPI环比增长情况等。
2、趋势分析法:常用于在一段时间周期内,通过分析数据运行的变化趋势(上升或下降),为未来的发展方向提供帮助。例如:用电量的季节性波动、股市的涨跌趋势等。
3、相关分析法:常用于分析两个或多个变量之间的性质以及相关程度。例如:气温与用电量的相关性、运动量大小与体重的相关性等。
4、回归分析法:常用于分析一个或多个自变量的变化对一个特定因变量的影响程度,从而确定其关系。例如:气温、用电设备、用电时长等因素对用电量数值大小的影响程度、工资收入的高低对生活消费支出大小的影响程度等。
5、描述性分析法:常用于对一组数据样本的各种特征进行分析,以便于描述样本的各种及其所代表的总体的特征。例如:本月日平均用电量、上海市工资收入中位数等。
6、结构分析法 :常用于分析数据总体的内部特征、性质和变化规律等。例如:各部分用电量占总用电的比重、生活消费支出构成情况等。
二、数据分析方法一般分为哪三种
1、漏斗分析
漏斗分析是指通过数据分析找到有问题的业务环节,并对其优化。
漏斗分析两大作用:其一,漏斗分析可以对各个业务阶段的用户、流量的变化进行监控,及时分析低转化率的环节,找出流失的关键,并不断优化。其二,漏斗分析可以根据不同的人群、渠道,进行差异化的分析,比如新渠道、新客户,分析出最佳的和最差的,这样能够提高操作的准确性和效率。
2、SWOT分析法
SWOT分别指资源优势、竞争劣势、外部环境变化带来的机会、威胁,通过衡量这些指标可以帮你确定企业经营战略。第一,S+O:利用“机会”充分发挥“优势”,巩固优势。第二,W+O:消除“劣势”利用“机会” 或抓住机会弥补劣势。第三,S+T:克服威胁,最大程度回避减轻。第四,W+T:做差异化,不正面交锋。
3、对比分析法
对比分析法即对比数据,分析差别,可以直观地看到某个方面的变化或差距,并能准确量化地表示这些变化或差距。对比分析既可以基于时间进行对比,也可以基于分类,如部门、地区、类别等进行对比。在工作中,我们会使用对比分析法比较多,比如,如上年的销量对比、目标与实际对比等。我们在对比的过程中要注意要找相似的对比对象。比如,佛山的人口与上海的人口对比就没有可比性,是毫无意义的。
三、做数据分析时的常用方法有哪些?
数据分析的三个常用方法有数据趋势分析、数据对比分析及数据细分分析。
1、数据趋势分析
趋势分析一般而言,适用于产品核心指标的长期跟踪,比如,点击率,GMV,活跃用户数等。做出简单的数据趋势图,并不算是趋势分析,趋势分析更多的是需要明确数据的变化,以及对变化原因进行分析。
2、数据对比分析
对比分析,就是给孤立的数据一个合理的参考系,否则孤立的数据毫无意义。一般而言,对比的数据是数据的基本面,比如行业的情况,全站的情况等。有的时候,在产品迭代测试的时候,为了增加说服力,会人为的设置对比的基准。也就是A/B test。
3、数据细分分析
在得到一些初步结论的时候,需要进一步地细拆,因为在一些综合指标的使用过程中,会抹杀一些关键的数据细节,而指标本身的变化,也需要分析变化产生的原因。细分分析是一个非常重要的手段,多问一些为什么,才是得到结论的关键,而一步一步拆分,就是在不断问为什么的过程。
四、论文数据分析方法有哪些
论文数据方法有多选题研究、聚类分析和权重研究三种。
1、多选题研究:多选题分析可分为四种类型包括:多选题、单选-多选、多选-单选、多选-多选。
2、聚类分析:聚类分析以多个研究标题作为基准,对样本对象进行分类。如果是按样本聚类,则使用SPSSAU的进阶方法模块中的“聚类”功能,系统会自动识别出应该使用K-means聚类算法还是K-prototype聚类算法。
3、权重研究:权重研究是用于分析各因素或指标在综合体系中的重要程度,最终构建出权重体系。权重研究有多种方法包括:因子分析、熵值法、AHP层次分析法、TOPSIS、模糊综合评价、灰色关联等。
拓展资料:
一、回归分析
在实际问题中,经常会遇到需要同时考虑几个变量的情况,比如人的身高与体重,血压与年龄的关系,他们之间的关系错综复杂无法精确研究,以致于他们的关系无法用函数形式表达出来。为研究这类变量的关系,就需要通过大量实验观测获得数据,用统计方法去寻找他们之间的关系,这种关系反映了变量间的统计规律。而统计方法之一就是回归分析。
最简单的就是一元线性回归,只考虑一个因变量y和一个自变量x之间的关系。例如,我们想研究人的身高与体重的关系,需要搜集大量不同人的身高和体重数据,然后建立一个一元线性模型。接下来,需要对未知的参数进行估计,这里可以采用最小二乘法。最后,要对回归方程进行显著性检验,来验证y是否随着x线性变化。这里,我们通常采用t检验。
二、方差分析
在实际工作中,影响一件事的因素有很多,人们希望通过实验来观察各种因素对实验结果的影响。方差分析是研究一种或多种因素的变化对实验结果的观测值是否有显著影响,从而找出较优的实验条件或生产条件的一种数理统计方法。
人们在实验中所观察到的数量指标称为观测值,影响观测值的条件称为因素,因素的不同状态称为水平,一个因素可能有多种水平。
在一项实验中,可以得到一系列不同的观测值,有的是处理方式不同或条件不同引起的,称为因素效应。有的是误差引起的,称做实验误差。方差分析的主要工作是将测量数据的总变异按照变异原因的不同分解为因素效应和试验误差,并对其作出数量分析,比较各种原因在总变异中所占的重要程度,作为统计推断的依据。
例如,我们有四种不同配方下生产的元件,想判断他们的使用寿命有无显著差异。在这里,配方是影响元件使用寿命的因素,四种不同的配方成为四种水平。可以利用方差分析来判断。
三、判别分析
判别分析是用来进行分类的统计方法。我来举一个判别分析的例子,想要对一个人是否有心脏病进行判断,可以取一批没有心脏病的病人,测其一些指标的数据,然后再取一批有心脏病的病人,测量其同样指标的数据,利用这些数据建立一个判别函数,并求出相应的临界值。
这时候,对于需要判别的病人,还是测量相同指标的数据,将其带入判别函数,求得判别得分和临界值,即可判别此人是否属于有心脏病的群体。
四、聚类分析
聚类分析同样是用于分类的统计方法,它可以用来对样品进行分类,也可以用来对变量进行分类。我们常用的是系统聚类法。首先,将n个样品看成n类,然后将距离最近的两类合并成一个新类,我们得到n-1类,再找出最接近的两类加以合并变成n-2类,如此下去,最后所有的样品均在一类,将上述过程画成一张图。在图中可以看出分成几类时候每类各有什么样品。
比如,对中国31个省份的经济发展情况进行分类,可以通过收集各地区的经济指标,例如GDP,人均收入,物价水平等等,并进行聚类分析,就能够得到不同类别数量下是如何分类的。
五、主成分分析
主成分分析是对数据做降维处理的统计分析方法,它能够从数据中提取某些公共部分,然后对这些公共部分进行分析和处理。
在用统计分析方法研究多变量的课题时,变量个数太多就会增加课题的复杂性。人们自然希望变量个数较少而得到的信息较多。在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠。
主成分分析是对于原先提出的所有变量,将重复的变量(关系紧密的变量)删去多余,建立尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映课题的信息方面尽可能保持原有的信息。
最经典的做法就是用F1(选取的第一个线性组合,即第一个综合指标)的方差来表达,即Var(F1)越大,表示F1包含的信息越多。因此在所有的线性组合中选取的F1应该是方差最大的,故称F1为第一主成分。
如果第一主成分不足以代表原来P个指标的信息,再考虑选取F2即选第二个线性组合,为了有效地反映原来信息,F1已有的信息就不需要再出现在F2中,用数学语言表达就是要求Cov(F1, F2)=0,则称F2为第二主成分,依此类推可以构造出第三、第四,……,第P个主成分。
六、因子分析
因子分析是主成分分析的推广和发展,它也是多元统计分析中降维的一种方法。因子分析将多个变量综合为少数几个因子,以再现原始变量与因子之间的相关关系。
在主成分分析中,每个原始变量在主成分中都占有一定的分量,这些分量(载荷)之间的大小分布没有清晰的分界线,这就造成无法明确表述哪个主成分代表哪些原始变量,也就是说提取出来的主成分无法清晰的解释其代表的含义。
因子分析解决主成分分析解释障碍的方法是通过因子轴旋转。因子轴旋转可以使原始变量在公因子(主成分)上的载荷重新分布,从而使原始变量在公因子上的载荷两级分化,这样公因子(主成分)就能够用哪些载荷大的原始变量来解释。以上过程就解决了主成分分析的现实含义解释障碍。
例如,为了了解学生的学习能力,观测了许多学生数学,语文,英语,物理,化学,生物,政治,历史,地理九个科目的成绩。为了解决这个问题,可以建立一个因子模型,用几个互不相关的公共因子来代表原始变量。我们还可以根据公共因子在原始变量上的载荷,给公共因子命名。
例如,一个公共因子在英语,政治,历史变量上的载荷较大,由于这些课程需要记忆的内容很多,我们可以将它命名为记忆因子。以此类推,我们可以得到几个能评价学生学习能力的因子,假设有记忆因子,数学推导因子,计算能力因子等。
接下来,可以计算每个学生的各个公共因子得分,并且根据每个公共因子的方差贡献率,计算出因子总得分。通过因子分析,能够对学生各方面的学习能力有一个直观的认识。
七、典型相关分析
典型相关分析同样是用于数据降维处理,它用来研究两组变量之间的关系。它分别对两组变量提取主成分。从同一组内部提取的主成分之间互不相关。用从两组之间分别提取的主成分的相关性来描述两组变量整体的线性相关关系。
以上就是关于数据分析都有哪些方法相关问题的回答。希望能帮到你,如有更多相关问题,您也可以联系我们的客服进行咨询,客服也会为您讲解更多精彩的知识和内容。
推荐阅读:
人工智能对人类社会发展的影响(大数据和人工智能对人类社会发展的影响)