HOME 首页
SERVICE 服务产品
XINMEITI 新媒体代运营
CASE 服务案例
NEWS 热点资讯
ABOUT 关于我们
CONTACT 联系我们
创意岭
让品牌有温度、有情感
专注品牌策划15年

    人工智能举出三个经典概念(人工智能举出三个经典概念的例子)

    发布时间:2023-03-16 02:30:50     稿源: 创意岭    阅读: 1548        问大家

    大家好!今天让创意岭的小编来大家介绍下关于人工智能举出三个经典概念的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。

    开始之前先推荐一个非常厉害的Ai人工智能工具,一键生成原创文章、方案、文案、工作计划、工作报告、论文、代码、作文、做题和对话答疑等等

    只需要输入关键词,就能返回你想要的内容,越精准,写出的就越详细,有微信小程序端、在线网页版、PC客户端

    官网:https://ai.de1919.com

    本文目录:

    人工智能举出三个经典概念(人工智能举出三个经典概念的例子)

    一、名词解释——人工智能

    人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是

    扩展资料:

    AI的核心问题包括建构能够跟人类似甚至超越的推理、知识、规划、学习、交流、感知、移动和操作物体的能力等。人工智能当前仍然是该领域的长远目标。当前强人工智能已经有初步成果,甚至在一些影像识别、语言分析、棋类游戏等等单方面的能力达到了超越人类的水平。

    而且人工智能的通用性代表着,能解决上述的问题的是一样的AI程序,无须重新开发算法就可以直接使用现有的AI完成任务,与人类的处理能力相同,但达到具备思考能力的统合强人工智能还需要时间研究,比较流行的方法包括统计方法,计算智能和传统意义的AI。

    当前有大量的工具应用了人工智能,其中包括搜索和数学优化、逻辑推演。而基于仿生学、认知心理学,以及基于概率论和经济学的算法等等也在逐步探索当中。 思维来源于大脑,而思维控制行为,行为需要意志去实现,而思维又是对所有数据采集的整理,相当于数据库,所以人工智能最后会演变为机器替换人类。

    参考资料来源:百度百科-人工智能

    二、关于人工智能

    “人工智能”(Artificial Intelligence)简称AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。

    人工智能研究如何用计算机去模拟、延伸和扩展人的智能;如何把计算机用得更聪明;如何设计和建造具有高智能水平的计算机应用系统;如何设计和制造更聪明的计算机以及智能水平更高的智能计算机等。

    人工智能是计算机科学的一个分支,人工智能是计算机科学技术的前沿科技领域。

    人工智能与计算机软件有密切的关系。一方面,各种人工智能应用系统都要用计算机软件去实现,另一方面,许多聪明的计算机软件也应用了人工智能的理论方法和技术。例如,专家系统软件,机器博弈软件等。但是,人工智能不等于软件,除了软件以外,还有硬件及其他自动化和通信设备。

    人工智能虽然是计算机科学的一个分支,但它的研究却不仅涉及到计算机科学,而且还涉及到脑科学、神经生理学、心理学、语言学、逻辑学、认知(思维)科学、行为科学和数学以及信息论、控制论和系统论等许多学科领域。因此,人工智能实际上是一门综合性的交叉学科和边缘学科。

    人工智能主要研究用人工的方法和技术,模仿、延伸和扩展人的智能,实现机器智能。有人把人工智能分成两大类:一类是符号智能,一类是计算智能。符号智能是以知识为基础,通过推理进行问题求解。也即所谓的传统人工智能。计算智能是以数据为基础,通过训练建立联系,进行问题求解。人工神经网络、遗传算法、模糊系统、进化程序设计、人工生命等都可以包括在计算智能。

    传统人工智能主要运用知识进行问题求解。从实用观点看,人工智能是一门知识工程学:以知识为对象,研究知识的表示方法、知识的运用和知识获取。

    人工智能从1956年提出以来取得了很大的进展和成功。1976年Newell 和Simon提出了物理符号系统假设,认为物理符号系统是表现智能行为必要和充分的条件。这样,可以把任何信息加工系统看成是一个具体的物理系统,如人的神经系统、计算机的构造系统等。80年代Newell 等又致力于SOAR系统的研究。SOAR系统是以知识块(Chunking)理论为基础,利用基于规则的记忆,获取搜索控制知识和操作符,实现通用问题求解。Minsky从心理学的研究出发,认为人们在他们日常的认识活动中,使用了大批从以前的经验中获取并经过整理的知识。该知识是以一种类似框架的结构记存在人脑中。因此,在70年代他提出了框架知识表示方法。到80年代,Minsky认为人的智能,根本不存在统一的理论。1985年,他发表了一本著名的书《Society of Mind(思维社会)》。书中指出思维社会是由大量具有某种思维能力的单元组成的复杂社会。以McCarthy和Nilsson等为代表,主张用逻辑来研究人工智能,即用形式化的方法描述客观世界。逻辑学派在人工智能研究中,强调的是概念化知识表示、模型论语义、演绎推理等。 McCarthy主张任何事物都可以用统一的逻辑框架来表示,在常识推理中以非单调逻辑为中心。传统的人工智能研究思路是“自上而下”式的,它的目标是让机器模仿人,认为人脑的思维活动可以通过一些公式和规则来定义,因此希望通过把人类的思维方式翻译成程序语言输入机器,来使机器有朝一日产生像人类一样的思维能力。这一理论指导了早期人工智能的研究。

    近年来神经生理学和脑科学的研究成果表明,脑的感知部分,包括视觉、听觉、运动等脑皮层区不仅具有输入/输出通道的功能,而且具有直接参与思维的功能。智能不仅是运用知识,通过推理解决问题,智能也处于感知通道。

    1990年史忠植提出了人类思维的层次模型,表明人类思维有感知思维、形象思维、抽象思维,并构成层次关系。感知思维是简单的思维形态,它通过人的眼、耳、鼻、舌、身感知器官产生表象,形成初级的思维。感知思维中知觉的表达是关键。形象思维主要是用典型化的方法进行概括,并用形象材料来思维,可以高度并行处理。抽象思维以物理符号系统为理论基础,用语言表述抽象的概念。由于注意的作用,使其处理基本上是串行的.

    三、AI人工智能-CNN概念轻松入门

    假设给定一张图(可能是字母X或者字母O),通过CNN即可识别出是X还是O,如下图所示,那怎么做到的呢

    如果采用经典的神经网络模型,则需要读取整幅图像作为神经网络模型的输入(即全连接的方式),当图像的尺寸越大时,其连接的参数将变得很多,从而导致计算量非常大。

    而我们人类对外界的认知一般是从局部到全局,先对局部有感知的认识,再逐步对全体有认知,这是人类的认识模式。在图像中的空间联系也是类似,局部范围内的像素之间联系较为紧密,而距离较远的像素则相关性较弱。因而,每个神经元其实没有必要对全局图像进行感知,只需要对局部进行感知,然后在更高层将局部的信息综合起来就得到了全局的信息。这种模式就是卷积神经网络中降低参数数目的重要神器:局部感受野。

    如果字母X、字母O是固定不变的,那么最简单的方式就是图像之间的像素一一比对就行,但在现实生活中,字体都有着各个形态上的变化(例如手写文字识别),例如平移、缩放、旋转、微变形等等,如下图所示:

    我们的目标是对于各种形态变化的X和O,都能通过CNN准确地识别出来,这就涉及到应该如何有效地提取特征,作为识别的关键因子。

    回想前面讲到的“局部感受野”模式,对于CNN来说,它是一小块一小块地来进行比对,在两幅图像中大致相同的位置找到一些粗糙的特征(小块图像)进行匹配,相比起传统的整幅图逐一比对的方式,CNN的这种小块匹配方式能够更好的比较两幅图像之间的相似性。如下图:

    以字母X为例,可以提取出三个重要特征(两个交叉线、一个对角线),如下图所示:

    假如以像素值"1"代表白色,像素值"-1"代表黑色,则字母X的三个重要特征如下:

    那么这些特征又是怎么进行匹配计算呢?(不要跟我说是像素进行一一匹配的,汗!)

    这时就要请出今天的重要嘉宾:卷积。那什么是卷积呢,不急,下面慢慢道来。

    当给定一张新图时,CNN并不能准确地知道这些特征到底要匹配原图的哪些部分,所以它会在原图中把每一个可能的位置都进行尝试,相当于把这个feature(特征)变成了一个过滤器。这个用来匹配的过程就被称为卷积操作,这也是卷积神经网络名字的由来。

    卷积的操作如下图所示:

    是不是很像把毛巾沿着对角卷起来,下图形象地说明了为什么叫「卷」积

    在本案例中,要计算一个feature(特征)和其在原图上对应的某一小块的结果,只需将两个小块内对应位置的像素值进行乘法运算,然后将整个小块内乘法运算的结果累加起来,最后再除以小块内像素点总个数即可(注:也可不除以总个数的)。

    如果两个像素点都是白色(值均为1),那么1 1 = 1,如果均为黑色,那么(-1) (-1) = 1,也就是说,每一对能够匹配上的像素,其相乘结果为1。类似地,任何不匹配的像素相乘结果为-1。具体过程如下(第一个、第二个……、最后一个像素的匹配结果):

    根据卷积的计算方式,第一块特征匹配后的卷积计算如下,结果为1

    对于其它位置的匹配,也是类似(例如中间部分的匹配)

    计算之后的卷积如下

    以此类推,对三个特征图像不断地重复着上述过程,通过每一个feature(特征)的卷积操作,会得到一个新的二维数组,称之为feature map。其中的值,越接近1表示对应位置和feature的匹配越完整,越是接近-1,表示对应位置和feature的反面匹配越完整,而值接近0的表示对应位置没有任何匹配或者说没有什么关联。如下图所示:

    可以看出,当图像尺寸增大时,其内部的加法、乘法和除法操作的次数会增加得很快,每一个filter的大小和filter的数目呈线性增长。由于有这么多因素的影响,很容易使得计算量变得相当庞大。

    为了有效地减少计算量,CNN使用的另一个有效的工具被称为“池化(Pooling)”。池化就是将输入图像进行缩小,减少像素信息,只保留重要信息。

    池化的操作也很简单,通常情况下,池化区域是2 2大小,然后按一定规则转换成相应的值,例如取这个池化区域内的最大值(max-pooling)、平均值(mean-pooling)等,以这个值作为结果的像素值。

    下图显示了左上角2 2池化区域的max-pooling结果,取该区域的最大值max(0.77,-0.11,-0.11,1.00),作为池化后的结果,如下图:

    池化区域往左,第二小块取大值max(0.11,0.33,-0.11,0.33),作为池化后的结果,如下图:

    其它区域也是类似,取区域内的最大值作为池化后的结果,最后经过池化后,结果如下:

    对所有的feature map执行同样的操作,结果如下:

    最大池化(max-pooling)保留了每一小块内的最大值,也就是相当于保留了这一块最佳的匹配结果(因为值越接近1表示匹配越好)。也就是说,它不会具体关注窗口内到底是哪一个地方匹配了,而只关注是不是有某个地方匹配上了。

    通过加入池化层,图像缩小了,能很大程度上减少计算量,降低机器负载。

    常用的激活函数有sigmoid、tanh、relu等等,前两者sigmoid/tanh比较常见于全连接层,后者ReLU常见于卷积层。

    回顾一下前面讲的感知机,感知机在接收到各个输入,然后进行求和,再经过激活函数后输出。激活函数的作用是用来加入非线性因素,把卷积层输出结果做非线性映射。

    在卷积神经网络中,激活函数一般使用ReLU(The Rectified Linear Unit,修正线性单元),它的特点是收敛快,求梯度简单。计算公式也很简单,max(0,T),即对于输入的负值,输出全为0,对于正值,则原样输出。

    下面看一下本案例的ReLU激活函数操作过程:

    第一个值,取max(0,0.77),结果为0.77,如下图

    第二个值,取max(0,-0.11),结果为0,如下图

    以此类推,经过ReLU激活函数后,结果如下:

    对所有的feature map执行ReLU激活函数操作,结果如下:

    通过将上面所提到的卷积、激活函数、池化组合在一起,就变成下图:

    通过加大网络的深度,增加更多的层,就得到了深度神经网络,如下图:

    全连接层在整个卷积神经网络中起到“分类器”的作用,即通过卷积、激活函数、池化等深度网络后,再经过全连接层对结果进行识别分类。

    首先将经过卷积、激活函数、池化的深度网络后的结果串起来,如下图所示:

    由于神经网络是属于监督学习,在模型训练时,根据训练样本对模型进行训练,从而得到全连接层的权重(如预测字母X的所有连接的权重)

    在利用该模型进行结果识别时,根据刚才提到的模型训练得出来的权重,以及经过前面的卷积、激活函数、池化等深度网络计算出来的结果,进行加权求和,得到各个结果的预测值,然后取值最大的作为识别的结果(如下图,最后计算出来字母X的识别值为0.92,字母O的识别值为0.51,则结果判定为X)

    上述这个过程定义的操作为”全连接层“(Fully connected layers),全连接层也可以有多个,如下图:

    将以上所有结果串起来后,就形成了一个“卷积神经网络”(CNN)结构,如下图所示:

    综述:卷积神经网络主要由两部分组成,一部分是特征提取(卷积、激活函数、池化),另一部分是分类识别(全连接层),著名的手写文字识别卷积神经网络结构图:

    CNN进化历史:

    卷积神经网络(CNN)近年来取得了长足的发展,是深度学习中的一颗耀眼明珠。CNN不仅能用来对图像进行分类,还在图像分割(目标检测)任务中有着广泛的应用。CNN已经成为了图像分类的黄金标准,一直在不断的发展和改进。

    CNN的起点是神经认知机模型,此时已经出现了卷积结构,经典的LeNet诞生于1998年。然而之后CNN的锋芒开始被SVM等模型盖过。随着ReLU、dropout的提出,以及GPU和大数据带来的历史机遇,CNN在2012年迎来了历史突破:AlexNet。随后几年,CNN呈现爆发式发展,各种CNN模型涌现出来。

    CNN的主要演进方向如下:

    1、网络结构加深

    2、加强卷积功能

    3、从分类到检测

    4、新增功能模块

    下图是CNN几个经典模型(AlexNet、VGG、NIN、GoogLeNet、ResNet)的对比图,可见网络层次越来越深、结构越来越复杂,当然模型效果也是越来越好:

    四、人工智能一般有哪几种类型?

    人工智能是计算机应用的一个方向,它的研究领域包括:自然语言处理,知识表现,智能搜索,推理,规划,机器学习,知识获取,组合调度问题,感知问题,模式识别,逻辑程序设计软计算,不精确和不确定的管理,人工生命,神经网络,复杂系统,遗传算法。

    常见的语音识别与合成、机器视觉与图像处理、智能机器人和自动驾驶都是人工智能的范畴。

    以上就是关于人工智能举出三个经典概念相关问题的回答。希望能帮到你,如有更多相关问题,您也可以联系我们的客服进行咨询,客服也会为您讲解更多精彩的知识和内容。


    推荐阅读:

    机器人就是人工智能吗(机器人就是人工智能吗)

    人工智能软件平台有哪些(人工智能软件平台有哪些公司)

    苹果客服人工解决(4006668800怎么转人工服务)

    厦门亦一景观设计(厦门亦欣酒店)

    朝阳庭院景观设计设计公司(朝阳庭院景观设计设计公司排名)